Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 075203    DOI: 10.1088/1674-1056/23/7/075203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster

Duan Ping (段萍)a, Qin Hai-Juan (覃海娟)a, Zhou Xin-Wei (周新维)a, Cao An-Ning (曹安宁)a, Chen Long (陈龙)b, Gao Hong (高宏)a
a Department of Physics, Dalian Maritime University, Dalian 116026, China;
b School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell (PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants (Ar, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence.
Keywords:  Hall thruster      electron temperature      sheath      secondary electron emission  
Received:  04 June 2013      Revised:  23 December 2013      Accepted manuscript online: 
PACS:  52.40.Kh (Plasma sheaths)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975026, 11275034, and 11175052), the Key Project of Science and Technology of Liaoning Province, China (Grant No. 2011224007), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 3132014328).
Corresponding Authors:  Duan Ping     E-mail:  duanping591@sohu.com
About author:  52.40.Kh; 52.65.-y

Cite this article: 

Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏) Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster 2014 Chin. Phys. B 23 075203

[1] Qiu G, Kang X L, Qiao C X and Feng Y 2012 J. Rocket Propulsion 38 1667 (in Chinese)
[2] Mao G W, Fu X P and Chen M L 2008 Mech. Sci. Tech. Aero. Eng. 27 853 (in Chinese)
[3] Steven R O and John M S 2001 3rd International Spacecraft Propulsion Conference, October 10-13, 2000, Cannes, France, p. 717
[4] Henry W B, Mark J O, Jones P A and Cassady R J 2002 Acta Astronautica 51 57
[5] Jankovsky R S, Jacobson D T, Sarmiento C J, Pinero L R, Manzella D H, Man H R R and Peterson P Y 2002 38th Joint Propulsion Conference and Exhibit, July 7-10, 2002, Indianapolis, Indiana, p.3675
[6] Kang X L, Yu S L, Qiao C X, Zhao Z, Hang G R, Qiu G, Chen H B and Zhang Y 2012 Proceeding of the 8th Chinese Electric Propulsion Conference, November 2012, p. 180 (in Chinese)
[7] Sydorenko D, Smolyakov A, Kaganovich I and Raitses Y 2006 IEEE Trans. Plasma Sci. 34 815
[8] Sydorenko D, Smolyakov A, Kaganovich I and Raitses Y 2008 Phys. Plasmas 15 053506
[9] Kaganovich I D, Raitses Y, Sydorenko D and Smolyakov A 2007 Phys. Plasmas 14 057104
[10] Zhang F K 2009 Study on Dynamic Characteristics of Dielectric Wall Sheath and its Effect on near Wall Conductivity in Hall Thrusters (Ph.D. Thesis) (Harbin: Harbin Institute of Technology of China) (in Chinese)
[11] Zhang F K, Ding Y J, Qing S W and Wu X D 2011 Chin. Phys. B 20 125201
[12] Zhang F K, Ding Y J, Li H, Wu X D and Yu D R 2011 Phys. Plasmas 18 103512
[13] Yu D R, Qing S W, Wang X G, Ding Y J and Duan P 2013 Acta Phys. Sin. 62 055202 (in Chinese)
[14] Duan P, Li X, E P and Qing S W 2011 Acta Phys. Sin. 60 125203 (in Chinese)
[15] Duan P, Shen H J, Liu J Y, Li X, E P and Chen L 2011 J. Propulsion Technology 31 185 (in Chinese)
[16] Duan P, Li X, Shen H J, Chen L and E P 2012 Plasmas Sci. Technol.14 1
[17] Zhao J, Tang D L and Wang L S 2008 Aero. Shanghai 2 36 (in Chinese)
[18] Bugrova A I, Desyatskov A V and Morozov A I 1992 Phys. Plasmas 18 501
[19] Guerrini G, Michaut C, Dudeck M, Vesselovzorov A N and Bacal M 1997 25th International Electric Propulsion Conference, August 24-28, 1997, Cleveland, Ohiop, American, p. 326
[20] Yu D R, Zhang F K, Li H and Liu H 2009 Acta Phys. Sin. 58 1844 (in Chinese)
[21] Dunaevsky A, Raitses Y and Fisch N J 2003 Phys. Plasmas 10 2574
[22] Barral S, Makowski K, Peradzyński Z, Gascon N and Dudeck M 2003 Phys. Plasmas 10 4137
[23] Shu S 2006 The Influence of Secondary Electron Emission on the Sheath and Near Wall Conductivity in Stationary Plasma Thruster (MS Thesis) (Harbin: Harbin Institute of Technology of China) (in Chinese)
[24] Fu Z F and Hu Y Q 1995 Space Plasma Numerical Simulation (3rd edn.) (Heifei: Anhui Science & Technology Publishing House) (in Chinese)
[25] Sydorenko D 2006 Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields (Ph.D. Thesis) (Saskatchewan: University of Saskatchewan)
[1] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[2] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[3] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[4] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[5] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[6] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[7] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[8] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[9] Light propagation characteristics of turbulent plasma sheath surrounding the hypersonic aerocraft
Chunjing Lv(吕春静), Zhiwei Cui(崔志伟), Yiping Han(韩一平). Chin. Phys. B, 2019, 28(7): 074203.
[10] Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve
Ming Ye(叶鸣), Peng Feng(冯鹏), Dan Wang(王丹), Bai-Peng Song(宋佰鹏), Yong-Ning He(贺永宁), Wan-Zhao Cui(崔万照). Chin. Phys. B, 2019, 28(7): 077901.
[11] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[12] Estimation of tungsten production from the upper divertor in EAST during edge localized modes
Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟). Chin. Phys. B, 2019, 28(12): 125201.
[13] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[14] Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁). Chin. Phys. B, 2018, 27(8): 085204.
[15] Particle-in-cell simulation for the effect of magnetic cusp on discharge characteristics in a cylindrical Hall thruster
Sheng-Tao Liang(梁圣涛), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2018, 27(4): 045201.
No Suggested Reading articles found!