Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 025202    DOI: 10.1088/1674-1056/25/2/025202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Sheath structure in plasma with two species of positive ions and secondary electrons

Xiao-Yun Zhao(赵晓云)1,2,3,4, Nong Xiang(项农)1,4, Jing Ou(欧靖)1,4, De-Hui Li(李德徽)1,4, Bin-Bin Lin(林滨滨)1,4
1. Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031, China;
2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China;
3. School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236037, China;
4. China for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at the sheath edge increase with secondary electron emission (SEE) coefficient, and the sheath structure is affected by the interplay between the two species of positive ions and secondary electrons. The critical SEE coefficients and the sheath widths depend strongly on the positive ion charge number, mass and concentration in the cases with and without SEE. In addition, ion kinetic energy flux to the wall and the impact of positive ion species on secondary electron density at the sheath edge are also discussed.
Keywords:  sheath      two-ion-species plasma      secondary electron emission  
Received:  29 July 2015      Revised:  14 October 2015      Accepted manuscript online: 
PACS:  52.40.Kh (Plasma sheaths)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475220 and 11405208), the Program of Fusion Reactor Physics and Digital Tokamak with the CAS "One-Three-Five" Strategic Planning, the National ITER Program of China (Grant No. 2015GB101003), and the Higher Education Natural Science Research Project of Anhui Province, China (Grant No. 2015KJ009).
Corresponding Authors:  Nong Xiang     E-mail:  xiangn@ipp.ac.cn

Cite this article: 

Xiao-Yun Zhao(赵晓云), Nong Xiang(项农), Jing Ou(欧靖), De-Hui Li(李德徽), Bin-Bin Lin(林滨滨) Sheath structure in plasma with two species of positive ions and secondary electrons 2016 Chin. Phys. B 25 025202

[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
[2] Barjatya A, Swenson C M, Thompson D C and Wright K H 2009 Rev. Sci. Instrum. 80 041301
[3] Xu X Q, Umansky M V, Dudson B and Snyder P B 2008 Commun. Comput. Phys. 4 949
[4] Riemann K U 1995 IEEE Trans. Plasma Sci. 23 709
[5] Lee D, Hershkowitz N and Severn G 2007 Appl. Phys. Lett. 91 041505
[6] Gudmundsson J T and Lieberman M A 2011 Phys. Rev. Lett. 107 035009
[7] Xiang N, Hu Y M and Ou J 2011 Plasma Sci. Technol. 13 385
[8] Franklin R N 2001 Plasma Sources Sci. Technol. 10 162
[9] Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309
[10] Severn G D, Xu W, Eunsuk K and Hershkowitz N 2003 Phys. Rev. Lett. 90 145001
[11] Baalrud S, Hegna C and Callen J 2009 Phys. Rev. Lett. 103 205002
[12] Yip C S and Hershkowitz N 2010 Phys. Rev. Lett. 104 225003
[13] Khoramabadi M, Ghomi H and Shukla P K 2013 J. Plasma Phys. 79 267
[14] Zhao X Y, Liu J Y, Duan P and Ni Z X 2011 Acta Phys. Sin. 60 045205 (in Chinese)
[15] Hatami M M, Niknam A R, Shokri B and Ghomi H 2008 Phys. Plasmas 15 053508
[16] Hatami M M 2013 Phys. Plasmas 20 013509
[17] Hatami M M 2015 Phys. Plasmas 22 043510
[18] Hobbs G D and Wesson J 1967 Plasma Phys. 9 85
[19] Schwager L A 1993 Phys. Fluids B 5 631
[20] Ahedo E 2002 Phys. Plasmas 9 4340
[21] Gyergyek T, Kovačič J and Čerček M 2010 Contrib. Plasma Phys. 50 121
[22] Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R and Sydorenko D 2013 Phys. Rev. Lett. 111 075002
[23] Zhang F K, Ding Y J, Qing S W and Wu X D 2011 Chin. Phys. B 20 125201
[24] Yu D R, Qing S W, Yan G J and Duan P 2011 Chin. Phys. B 20 065204
[25] Duan P, Qin H J, Zhou X W, Cao A N, Chen L and Gao H 2014 Chin. Phys. B 23 075203
[26] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
[27] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol: IOP Publishing) p. 646
[28] Pandey B P, Samarian A and Vladimirov S V 2008 Plasma Phys. Control Fusion 50 055003
[29] Khoramabadi M and Masoudi S F 2013 Chin. Phys. Lett. 30 085202
[30] Čerček M, Filipič G, Gyergyek T and Kovačič J 2010 Contrib. Plasma Phys. 50 909
[31] Chen F F 1974 Introduction to Plasma Physics (New York: Plenum) p. 156
[32] Bohm D 1949 The Characteristics of Electrical Discharges in Magnetic Fields (New York: McGraw-Hill)
[33] Buzzi F L, Ting Y H and Wendt A E 2009 Plasma Sources Sci. Technol. 18 025009
[34] Campanell M D 2015 Phys. Plasmas 22 040702
[1] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[2] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[3] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[4] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[5] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[6] Light propagation characteristics of turbulent plasma sheath surrounding the hypersonic aerocraft
Chunjing Lv(吕春静), Zhiwei Cui(崔志伟), Yiping Han(韩一平). Chin. Phys. B, 2019, 28(7): 074203.
[7] Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve
Ming Ye(叶鸣), Peng Feng(冯鹏), Dan Wang(王丹), Bai-Peng Song(宋佰鹏), Yong-Ning He(贺永宁), Wan-Zhao Cui(崔万照). Chin. Phys. B, 2019, 28(7): 077901.
[8] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[9] Estimation of tungsten production from the upper divertor in EAST during edge localized modes
Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟). Chin. Phys. B, 2019, 28(12): 125201.
[10] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[11] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[12] Dust charging and levitating in a sheath of plasma containing energetic particles
Jing Ou(欧靖), Xiao-Yun Zhao(赵晓云), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2018, 27(2): 025204.
[13] A two-dimensional model of He/O2 atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Chen Xiao-Chang (陈小昌), Liu San-Qiu (刘三秋), Yan Wen (晏雯), Liu Fu-Cheng (刘富成), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125203.
[14] A double toroidal analyzer for scanning probe electron energy spectrometer
Xu Chun-Kai (徐春凯), Zhang Pan-Ke (张盼科), Li Meng (郦盟), Chen Xiang-Jun (陈向军). Chin. Phys. B, 2014, 23(7): 073402.
[15] Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏). Chin. Phys. B, 2014, 23(7): 075203.
No Suggested Reading articles found!