Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 015203    DOI: 10.1088/1674-1056/25/1/015203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas

Ze-Yu Li(李泽宇)1, Xian-Qu Wang(王先驱)2, Xiao-Gang Wang(王晓钢)3
1. State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China;
2. Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
3. Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  In this paper, we study the effect of safety factor profiles, particularly with a very weak magnetic shear, on the m/n=1 mode excited by energetic ions in tokamak plasmas. It is found that the profile plays a significant role in the onset of the mode, and the thresholds for the instability are also derived. The numerical results for configurations with conventional or reversed non monotonic magnetic shears are discussed. The effects of radial location of rational surfaces, edge q value, and flatness of q-profile on the energetic ion excited mode are further analyzed in detail.
Keywords:  safety factor profile      magnetohydrodynamics      tokamak      energetic particles  
Received:  24 July 2015      Revised:  01 September 2015      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  89.30.Jj (Nuclear fusion power)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB107004) and the National Natural Science Foundation of China (Grant Nos. 11575014, 11375053, 11475058, and 11261140326).
Corresponding Authors:  Xian-Qu Wang     E-mail:  xianquwang@swjtu.edu.cn

Cite this article: 

Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢) Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas 2016 Chin. Phys. B 25 015203

[1] McGuire K, et al. 1983 Phys. Rev. Lett. 50 891
[2] Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122
[3] Chen L 1994 Phys. Plasmas 1 1519
[4] Fasoli A, Gormenzano C and Berk H L 2007 Nucl. Fusion 47 S264
[5] White R B, Chen L, Romanelli F and Hay R 1985 Phys. Fluids 28 278
[6] Zonca F, Buratti P and Cardinali A2007 Nucl. Fusion 47 1588
[7] Zonca F and Chen L 2014 Phys. Plasmas 21 072120
[8] Coppi B and Porcelli F 1986 Phys. Rev. Lett. 57 2272
[9] Shi B R, van Dam J W, Carrera R and Zhang Y Z 1993 Acta Phys. Sin. (Overseas Edn) 2 260 (in Chinese)
[10] Wong K L, Chu M S, Luce T C, Petty C C, Politzer P A, Prater R, Chen L, Harvey R W, Austin M E, Johnson L C, La Haye R J and Snider R T 2000 Phys. Rev. Lett. 85 996
[11] Chen W, Ding X T, Liu Y, et al. 2010 Nucl. Fusion 50 084008
[12] Chen W, Ding X T, Liu Y, et al. 2009 Nucl. Fusion 49 075022
[13] Wang Z T, Long Y X, Dong J Q, Wang L and Zonca F 2006 Chin. Phys. Lett. 23 0158
[14] Chen W, Ding X T, Liu Y, Yuan G L, Zhang Y P, Dong Y B, Song X Y, Zhou J, Song X M, Deng W and Yang Q W 2008 Chin. Phys. Lett. 25 3708
[15] Xu L Q, Hu L Q and EAST team 2013 Chin. Phys. Lett. 30 75201
[16] Bussac M N, Pellat R, Edery D and Soule J L 1975 Phys. Rev. Lett. 35 1638
[17] Hu B, Betti R and Manickam J 2006 Phys. Plasmas 13 112505
[18] Wang F, Fu G Y, Breslau J and Liu J Y 2013 Phys. Plasmas 20 102506
[19] Chapman I T, Hua M D, Pinches S D, Akers R J, Field A R, Graves J P, Hastie R J, Michael C A and the MAST Team 2010 Nucl. Fusion 50 045007
[20] Hastie R J, Hender T C, Carreras B A, Charlton L A and Holmes J A 1987 Phys. Fluids 30 1756
[21] He H D, Dong J Q, Fu G Y, He Z X, Jiang H B, Wang Z T, Zheng G Y, Liu F, Long Y X, Shen Y and Wang L F 2011 Nucl. Fusion 51 113012
[22] Hao G Z, Wang A K, Liu Y Q and Qiu X M 2011 Phys. Rev. Lett. 107 015001
[23] White R B, Rutherford P H, Colestock P and Bussac M N 1988 Phys. Rev. Lett. 60 2038
[24] Cai H, Wang S, Xu Y, Cao J and Li D 2011 Phys. Rev. Lett. 106 075002
[25] Chen S Y, Wang Z T and Tang C J 2012 Chin. Phys. Lett. 29 025203
[26] Bussac M N and Lerbinger K 1987 Phys. Lett. A 121 337
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[3] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[4] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[5] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[6] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[7] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[8] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[9] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[10] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[11] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[12] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[13] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[14] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[15] Dust charging and levitating in a sheath of plasma containing energetic particles
Jing Ou(欧靖), Xiao-Yun Zhao(赵晓云), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2018, 27(2): 025204.
No Suggested Reading articles found!