Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 045203    DOI: 10.1088/1674-1056/abe230
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model

Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺)
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  The attenuation characteristics of obliquely incident electromagnetic (EM) wave in L-Ka frequency band in weakly ionized dusty plasma are analyzed based on the modified Bhatnagar-Gross-Krook (BGK) collision model. According to the kinetic equation and the charging theory, the total complex dielectric constant of the weakly ionized dusty plasma is derived by considering that the minimum velocity of the electron accessible to the dust particle surface is non-zero and the second potential part of the collision cross-section contributes to the charging. The attenuation characteristics within the modified model are compared with those within the traditional model. The influence of the dusty plasma parameters and the incident angle of EM waves on the attenuation in weakly ionized dusty plasma is further analyzed. Finally, the influence of different reentry heights on the attenuation characteristics of the obliquely incident EM wave is discussed. The results show that the effect of the minimum electron velocity and the second term of the collision cross-section on the attenuation characteristics of EM waves cannot be ignored. When the dust density and dust radius are changed, the trends of the attenuation of obliquely incident EM waves are consistent, but the influence of dust density is weaker than that of dust radius due to the constraint of orbit-limited motion (OLM) theory. The plasma thickness, electron density, and incident angle are proportional to the attenuation amplitude of EM waves. The effect of different reentry heights on the attenuation obliquely incident EM waves is related to the electron density and plasma thickness.
Keywords:  dusty plasma      electromagnetic wave absorption      electromagnetic propagation      plasma sheaths  
Received:  20 December 2020      Revised:  24 January 2021      Accepted manuscript online:  02 February 2021
PACS:  52.25.Mq (Dielectric properties)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.40.Kh (Plasma sheaths)  
  94.30.Tz (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U20B2059 and 61627901), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61621005), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2019JM-206), the National Key Laboratory Foundation of China (Grant No. HTKJ2019KL504014), the Fundamental Research Funds for the Central Universities, China, and the Innovation Fund of Xidian University and the 111 Project (Grant No. B17035).
Corresponding Authors:  Corresponding author. E-mail: lxguo@xidian.edu.cn   

Cite this article: 

Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺) Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model 2021 Chin. Phys. B 30 045203

1 Dan L, Guo L X, Li J T, Chen W, Yan X and Huang Q Q 2017 Phys. Plasmas 24 093703
2 Chen W, Guo L X, Li J T and Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235
3 Keidar M, Kim M and Boyd I D 2008 J. Spacecr. Rockets 45 445
4 Chen W, Yang L X, Huang Z X and Guo L X 2019 J. Quant. Spectros. Radiat. Transfer 232 66
5 Wang M, Yu M, Xu Z, Li G, Jiang B and Xu J 2015 IEEE Trans. Plasma Sci. 43 4182
6 Kim M, Keidar M and Boyd I D 2008 IEEE Trans. Plasma Sci. 36 1198
7 Verheest F 1992 Planet. Space Sci. 40 1
8 Sheehan D P, Carillo M and Heidbrink W 1990 Rev. Sci. Instrum. 61 3871
9 Mendis and Rosenberg 1994 Ann. Rev. Astron. Astrophys. 32 419
10 Boufendi L, Bouchoule A, Porteous R K, Blondeau J P, Plain A and Laure C 1993 J. Appl. Phys. 73 2160
11 Angelis U D 1992 Phys. Scripta 45 465
12 Selwyn G S, Heidenreich J E and Haller K L 1990 Appl. Phys. Lett. 57 1876
13 Tsintsadze N L, Chaudhary R, Shah H A and Murtaza G 2009 Phys. Plasmas 16 043702
14 Shukla P K and Stenflo L 2001 IEEE Trans. Plasma Sci. 29 267
15 Khrapak S A and Morfill G E 2004 Phys. Rev. E 69 066411
16 Shi Y X, Wu J and Ge D B 2009 Acta Phys. Sin. 58 5507 (in Chinese)
17 Tsytovich V N 1997 Physics-Uspekhi 40 53
18 Wang M, Li H, Dong Y, Li G, Jiang B, Zhao Q and Xu J 2016 IEEE Trans. Antennas Propag. 64 286
19 Wang M, Zhang M, Li G, Jiang B, Zhang X and Xu J 2016 Plasma Sci. Tech. 18 798
20 Juli M C D, Schneider R S, Ziebell L F and Jatenco-Pereira V 2005 AIP Conf. Proc. 784 521
21 Li H, Wu J, Shi Y and Wu J2010 Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, Nov. 29-Dec. 2, 2010, Guangzhou, China, p. 371
22 Jia J, Yuan C, Gao R, Wang Y, Liu Y, Gao J, Zhou Z, Sun X, Wu J, Li H and Pu S 2015 J. Phys. D: Appl. Phys. 48 465201
23 Prudskikh V V and Shchekinov Y A 2013 Phys. Plasmas 20 102106
24 Hong Y, Yuan C, Jia J, Gao R, Wang Y, Zhou Z, Wang X, Li H and Wu J 2017 Plasma Sci. Tech. 19 055301
25 Wang Z, Guo L, Dan L and Li J 2019 IEEE Trans. Plasma Sci. 47 3978
26 Chen W, Yang L X, Huang Z X and Guo L X 2019 IEEE Trans. Plasma Sci. 47 4745
27 Liu Y T, Chen W, Yang L X, Huang Z X, Guo L X, Guo L J and Deng Q Q 2020 Phys. Plasmas 27 093702
28 Zheng Y and Struchtrup H 2005 Phys. Fluids 17 127103
29 Duan J Z, Han J F, Wang C L, Xu Y X, Zhang J R, Duan W S and Yang L 2013 IEEE Trans. Plasma Sci. 41 2434
30 Shi Y X 2007 Chin. J. Geophys. 50 877
31 Yu H, Xu G J and Zheng Z Q 2019 Optik 188 244
32 Akey N D and Cross A E1970 Radio blackout alleviation and plasma diagnostic results from a 25000 foot per second blunt-body reentry (NASA Technical Report), (Washington DC: Langley Research Center)
[1] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[2] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[3] Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force
Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager. Chin. Phys. B, 2022, 31(1): 010505.
[4] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[5] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[6] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[7] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[8] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[9] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[10] Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture
Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉). Chin. Phys. B, 2017, 26(4): 045202.
[11] Channel characterization at 120 GHz for future indoor communication systems
Chen Zhen (陈镇), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2013, 22(5): 059201.
[12] Enhanced absorption property of ordered mesoporous carbon/Co-doped ordered mesoporous carbon double-layer absorber
Guo Shao-Li (郭绍丽), Wang Liu-Ding (王六定), Wang Yi-Ming (王一明), Wu Hong-Jing (吴宏景), Shen Zhong-Yuan (沈中元). Chin. Phys. B, 2013, 22(4): 044101.
[13] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[14] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[15] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
No Suggested Reading articles found!