Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 125203    DOI: 10.1088/1674-1056/24/12/125203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A two-dimensional model of He/O2 atmospheric pressure plasma needle discharge

Qian Mu-Yang (钱沐杨)a, Yang Cong-Ying (杨从影)a, Chen Xiao-Chang (陈小昌)a, Liu San-Qiu (刘三秋)a, Yan Wen (晏雯)b, Liu Fu-Cheng (刘富成)c, Wang De-Zhen (王德真)b
a Department of Physics, Nanchang University, Nanchang 330031, China;
b School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023, China;
c College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  In this paper, a computational modeling study of stream propagation in the atmospheric-pressure helium plasma in ambient atmosphere (oxygen) is presented. A coupled fluid model between time-dependent plasma dynamics and steady state neutral gas flow is employed to provide a fundamental insight into the evolution of the streamers. The obtained simulation results showing that the sheath forms near the dielectric surface and shields the axial stream propagation. The stream front propagates with axial velocity in a range of 104 m/s-105 m/s. And, the increasing accumulated surface charge should be responsible for reducing the propagation velocity of the streamer front in the axial direction. Besides, when the gas flow rate is 1.1 standard liter per minute (SLM), we find that the concentration of oxygen drastically increases at a larger radial position near a treated surface. Therefore, Penning ionization by helium metastables and oxygen peaks at an off-axis position, corresponding to the ring-shaped emission profile in cylindrical coordinates. In this case, the simulated results show the ring-shaped ground atomic oxygen density profile near the treated surface (z=0.5 mm) at a large gas flow rate of 1.1 SLM, which is consistent with the observation in a similar experiment.
Keywords:  atmospheric pressure plasma needle discharge      streamer dynamics      cathode sheath  
Received:  27 May 2015      Revised:  26 August 2015      Accepted manuscript online: 
PACS:  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  52.40.Kh (Plasma sheaths)  
  52.25.Fi (Transport properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11465013), the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012).
Corresponding Authors:  Qian Mu-Yang     E-mail:  qianmuyang@ncu.edu.cn

Cite this article: 

Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Chen Xiao-Chang (陈小昌), Liu San-Qiu (刘三秋), Yan Wen (晏雯), Liu Fu-Cheng (刘富成), Wang De-Zhen (王德真) A two-dimensional model of He/O2 atmospheric pressure plasma needle discharge 2015 Chin. Phys. B 24 125203

[1] Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N and Fridman A 2008 Plasma Process. Polym. 5 503
[2] Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, Dijk J V and Zimmermann J L 2009 New J. Phys. 11 115012
[3] Cheng C, Shen J, Xiao D Z, Xie H B, Lan Y, Fang S D, Meng Y D and Chu P K 2014 Chin. Phys. B 23 075204
[4] Zhou Z Y, Chen G C, Tang W Z and Lü F X 2006 Chin. Phys. 15 980
[5] Stoffels E, Flikweert A J, Stoffels W W and Kroesen G M W 2002 Plasma Sources Sci. Technol. 11 383
[6] Stoffels E, Kieft I E, Sladek R E J, van den Bedem L J M, van der Laan E P and Steinbuch M 2006 Plasma Sources Sci. Technol. 15 S169
[7] Kelly S and Turner M M 2011 J. Appl. Phys. 110 053303
[8] Goree J, Liu B, Drake D and Stoffels E 2006 IEEE Trans. Plasma Sci. 34 1317
[9] Goree J, Liu B and Drake D 2006 J. Phys. D: Appl. Phys. 39 3479
[10] Sakiyama Y and Graves D B 2009 Plasma Sources Sci. Technol. 18 025022
[11] Zhang Q, Liang Y D, Feng H Q, Ma R N, Tian Y, Zhang J and Fang J 2013 Appl. Phys. Lett. 102 203701
[12] Sakiyama Y, Knake N, Schröder D, Winter J, der Gathen V S and Graves D B 2010 Appl. Phys. Lett. 97 151501
[13] Yan W, Liu F C, Sang C F and Wang DZ 2015 Chin. Phys. B 24 065203
[14] Naidis G V 2014 Plasma Sources Sci. Technol. 23 065014
[15] Chang Z S, Jiang N, G. Zhang J and Cao Z X 2014 J. Appl. Phys. 115 103301
[16] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[17] Liu X Y, Pei X K, Lu X P and Liu D W 2014 Plasma Sources Sci. Technol. 23 035007
[18] Breden D, Miki K and Raja L L 2012 Plasma Sources Sci. Technol. 21 034011
[19] Yan W, Liu F C, Sang C F and Wang D Z 2014 Phys. Plasmas 21 013504
[20] Boeuf J P, Yang L L and Pitchford L C 2013 J. Phys. D: Appl. Phys. 46 015201
[21] Walsh J L, Shi J J and Kong M G 2006 Appl. Phys. Lett. 88 171501
[22] Lu X, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
[23] Wu S, Lu X and Pan Y 2014 Phys. Plasmas 21 073509
[1] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[2] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[3] Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs
Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真). Chin. Phys. B, 2019, 28(4): 045201.
[4] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[5] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[6] Numerical simulation of the initial plasma formation and current transfer in single-wire electrical explosion in vacuum
Kun Wang(王坤), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Jun Bai(白骏), Jian Wu(吴坚), Shen-Li Jia(贾申利), Ai-Ci Qiu(邱爱慈). Chin. Phys. B, 2017, 26(7): 075204.
[7] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[8] Conversion of an atomic to a molecular argon ion and low pressure argon relaxation
M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković. Chin. Phys. B, 2016, 25(1): 015204.
[9] A computational modeling study on the helium atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Liu San-Qiu (刘三秋), Wang Zhen-Dong (王震东), Lv Yan (吕燕), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125202.
[10] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[11] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[12] Characterization of plasma current quench during disruption in EAST tokamak
Chen Da-Long (陈大龙), Granetz Robert, Shen Biao (沈飙), Yang Fei (杨飞), Qian Jin-Ping (钱金平), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(2): 025205.
[13] Effect of passive structure and toroidal rotation on resistive wall mode stability in the EAST tokamak
Liu Guang-Jun (刘广君), Wan Bao-Nian (万宝年), Sun You-Wen (孙有文), Liu Yue-Qiang (刘钺强), Guo Wen-Feng (郭文峰), Hao Guang-Zhou (郝广周), Ding Si-Ye (丁斯晔), Shen Biao (沈飙), Xiao Bing-Jia (肖炳甲), Qian Jin-Ping (钱金平). Chin. Phys. B, 2014, 23(7): 075205.
[14] Effect of shear equilibrium flow in Tokamak plasma on resistive wall modes
Li Li (李莉), Liu Yue (刘悦). Chin. Phys. B, 2013, 22(7): 075203.
[15] Identification of m=2 competent mode of complex magneto-hydro-dynamics activities during internal soft disruption based on singular value decomposition and tomography of soft-X-ray emission on the HT-7 tokamak
Xu Li-Qing(徐立清), Hu Li-Qun(胡立群), Li Er-Zhong(李二众), Chen Kai-Yun(陈开云), Liu Zhi-Yuan(刘志远), Chen Ye-Bin(陈晔斌), Zhang Ji-Zong (张继宗), Zhou Rui-Jie(周瑞杰), Yang Mao(杨茂), Mao Song-Tao(毛松涛), and Duan Yan-Min(段艳敏) . Chin. Phys. B, 2012, 21(5): 055208.
No Suggested Reading articles found!