Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057503    DOI: 10.1088/1674-1056/ab8200
RAPID COMMUNICATION Prev   Next  

Low temperature magnetism in the rare-earth perovskite GdScO3

Jie-Ming Sheng(盛洁明)1,2,3, Xu-Cai Kan(阚绪材)4, Han Ge(葛晗)1, Pei-Qian Yuan(袁培骞)1, Lei Zhang(张磊)1, Nan Zhao(赵南)1, Zong-Mei Song(宋宗美)1, Yuan-Yin Yao(姚远寅)1, Ji-Ning Tang(唐霁宁)1, Shan-Min Wang(王善民)1, Ming-Liang Tian(田明亮)4,5, Xin Tong(童欣)2,3, Liu-Suo Wu(吴留锁)1
1 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China;
3 Spallation Neutron Source Science Center, Dongguan 523803, China;
4 School of Physics and Materials Science, Anhui University, Hefei 230601, China;
5 High Magnetic Field Laboratory, Chinese Academy of Science(CAS), Hefei 230031, China
Abstract  The magnetic phase diagram of rare-earth perovskite compound, GdScO3, has been investigated by magnetization and heat capacity. The system undergoes an antiferromagnetic phase transition at TN=2.6 K, with an easy axis of magnetization along the a axis. The magnetization measurements show that it exists a spin-flop transition around 0.3 T for the applied field along the a axis. The critical magnetic field for the antiferromagnetic-to-paramagnetic transition is near 3.2 T when temperature approaches zero. By scaling susceptibilities, we presume this point (B=3.2 T, T=0 K) might be a field-induced quantum critical point and the magnetic critical fluctuations can even be felt above TN.
Keywords:  rare-earth perovskite      magnetization      spin-flop transition      quantum critical point  
Received:  02 January 2020      Revised:  16 March 2020      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  75.50.Ee (Antiferromagnetics)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: The work at SUSTech was supported by the National Natural Science Foundation of China (Grant No. 11974157). Part of this work was also supported by the National Natural Science Foundation of China (Grant No. 11875265), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (3He-based neutron polarization devices), and the Institute of High Energy Physics, the Chinese Academy of Sciences. Kan X C and Tian M L were supported by the National Natural Science Foundation of China (Grant No. 51802002).
Corresponding Authors:  Xin Tong, Liu-Suo Wu     E-mail:  tongx@ihep.ac.cn;wuls@sustech.edu.cn

Cite this article: 

Jie-Ming Sheng(盛洁明), Xu-Cai Kan(阚绪材), Han Ge(葛晗), Pei-Qian Yuan(袁培骞), Lei Zhang(张磊), Nan Zhao(赵南), Zong-Mei Song(宋宗美), Yuan-Yin Yao(姚远寅), Ji-Ning Tang(唐霁宁), Shan-Min Wang(王善民), Ming-Liang Tian(田明亮), Xin Tong(童欣), Liu-Suo Wu(吴留锁) Low temperature magnetism in the rare-earth perovskite GdScO3 2020 Chin. Phys. B 29 057503

[1] Wu L S, Nikitin S E, Frontzek M, Kolesnikov A I, Ehlers G, Lumsden M D, Shaykhutdinov K A, Guo E J, Savici A T and Gai Z 2017 Phys. Rev. B 96 144407
[2] Wu Y D, Qin Y L, Ma X H, Li R W, Wei Y Y and Zi Z F 2019 J. Alloys Compd. 777 673
[3] Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D and Xia Z C 2019 J. Alloys Compd. 803 992
[4] Schlom D G and Haeni J H 2002 MRS Bull. 27 198
[5] Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, Uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500
[6] Lucovsky G, Zhang Y, Whitten J L, Schlom D G and Freeouf J L 2004 Microelectronic Engineering 72 288
[7] Lucovsky G, Hong J G, Fulton C C, Zou Y, Nemanich R J, Ade H, Scholm D G and Freeouf J L 2004 Physica Status Solidi 241 2221
[8] Delugas P, Fiorentini V, Filippetti A and Pourtois G 2007 Phys. Rev. B 75 115126
[9] Christen H M, Jellison G E Jr, Ohkubo I, Huang S, Reeves M E, Cicerrella E, Freeouf J L, Jia Y and Schlom D G 2006 Appl. Phys. Lett. 88 262906
[10] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K and Triscone J M 2007 Ann. Rev. Mater. Res. 37 589
[11] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, et al. 2004 Nature 430 758
[12] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, et al. 2004 Science 306 1005
[13] Ke X, Adamo C, Schlom D G, Bernhagen M, Uecker R and Schiffer P 2009 Appl. Phys. Lett. 94 152503
[14] Plaza I, Palacios E, BartoloméJ, Rosenkranz S, Ritter C and Furrer A 1997 Physica B 234 635
[15] Raekers M, Kuepper K, Bartkowski S, Prinz M, Postnikov A V, Potzger K, Zhou S, Arulraj A, Stüßer N, Uecker R, et al. 2009 Phys. Rev. B 79 125114
[16] Wu L S, Nikitin S E, Wang Z, Zhu W, Batista C D, Tsvelik A M, Samarakoon A M, Tennant D A, Brando M, Vasylechko L, et al. 2019 Nat. Commun. 10 698
[17] Wu L S, Nikitin S E, Brando M, Vasylechko L, Ehlers G, Frontzek M, Savici A T, Sala G, Christianson A D, Lumsden M D, et al. 2019 Phys. Rev. B 99 195117
[18] Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
[19] Kimura T, Lawes G, Goto T, Tokura Y and Ramirez A P 2005 Phys. Rev. B 71 224425
[20] Schubert J, Trithaveesak O, Petraru A, Jia C L, Uecker R, Reiche P and Schlom D G 2003 Appl. Phys. Lett. 82 3460
[21] Liferovich R P and Mitchell R H 2004 J. Solid State Chem. 177 2188
[22] Blazey K W and Rohrer H 1968 Phys. Rev. 173 574
[23] Quezel S, Mignod J R and Tcheou F 1982 Solid State Commun. 42 103
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[3] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[4] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[5] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[8] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[9] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[10] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[11] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[12] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[13] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[14] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[15] Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field
Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2021, 30(9): 090202.
No Suggested Reading articles found!