Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127402    DOI: 10.1088/1674-1056/27/12/127402
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

High-throughput research on superconductivity

Mingyang Qin(秦明阳)1, Zefeng Lin(林泽丰)1, Zhongxu Wei(魏忠旭)1, Beiyi Zhu(朱北沂)1, Jie Yuan(袁洁)1,2, Ichiro Takeuchi3, Kui Jin(金魁)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Department of Materials Science and Engineering, and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
Abstract  

As an essential component of the Materials Genome Initiative aiming to shorten the period of materials research and development, combinatorial synthesis and rapid characterization technologies have been playing a more and more important role in exploring new materials and comprehensively understanding materials properties. In this review, we discuss the advantages of high-throughput experimental techniques in researches on superconductors. The evolution of combinatorial thin-film technology and several high-speed screening devices are briefly introduced. We emphasize the necessity to develop new high-throughput research modes such as a combination of high-throughput techniques and conventional methods.

Keywords:  superconductivity      materials genome initiative      high-throughput experimental technology      high-throughput research mode  
Received:  04 September 2018      Revised:  27 October 2018      Accepted manuscript online: 
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  81.70.-q (Methods of materials testing and analysis)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, 2016YFA0300301, 2017YFA0303003, and 2017YFA0302902), the National Natural Science Foundation of China (Grant Nos. 11674374, 11804378, and 11574372), the Beijing Municipal Science and Technology Project (Grant No. Z161100002116011), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100), and the Opening Project of Wuhan National High Magnetic Field Center (Grant No. PHMFF2015008).

Corresponding Authors:  Ichiro Takeuchi, Kui Jin     E-mail:  takeuchi@physics.umd.edu;kuijin@iphy.ac.cn

Cite this article: 

Mingyang Qin(秦明阳), Zefeng Lin(林泽丰), Zhongxu Wei(魏忠旭), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Ichiro Takeuchi, Kui Jin(金魁) High-throughput research on superconductivity 2018 Chin. Phys. B 27 127402

[1] Sun G F, Wong K W, Xu B R, Xin Y and Lu D F 1994 Phys. Lett. A 192 122
[2] Armitage N P, Fournier P and Greene R L 2010 Rev. Mod. Phys. 82 2421
[3] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[4] Saadaoui H, Salman Z, Luetkens H, Prokscha T, Suter A, MacFarlane W A, Jiang Y, Jin K, Greene R L, Morenzoni E and Kiefl R F 2015 Nat. Commun. 6 6041
[5] Jiang W, Peng J L, Li Z Y and Greene R L 1993 Phys. Rev. B 47 8151
[6] Fernandes R M, Pratt D K, TianW, Zarestky J, Kreyssig A, Nandi S, Kim M G, Thaler A, Ni N, Canfield P C, McQueeney R J, Schmalian J and Goldman A I 2010 Phys. Rev. B 81 140501
[7] Gor'kov L P and Kresin V Z 2018 Rev. Mod. Phys. 90 011001
[8] Yuan J, He G, Yang H, Shi Y J, Zhu B Y and Jin K 2015 Sci. China-Phys. Mech. Astron. 58 107401
[9] Mao S S 2013 J. Cryst. Growth 379 123
[10] Koinuma H and Takeuchi I 2004 Nat. Mater. 3 429
[11] Green M L, Takeuchi I and Hattrick-Simpers J R 2013 J. Appl. Phys. 113 231101
[12] Wang H Z, Wang H, Ding H, Xiang X D, Xiang Y and Zhang X K 2015 Sci. Technol. Rev. 33 31 (in Chinese)
[13] Koinuma H, Aiyera H N and Matsumoto Y 2000 Sci. Technol. Adv. Mater. 1 1
[14] Potyrailo R, Rajan K, Stoewe K, Takeuchi I, Chisholm B and Lam H 2011 ACS Comb. Sci. 13 579
[15] Woo S I, Kim K W, Cho H Y, Oh K S, Jeon M K, Tarte N H, Kim T S and Mahmood A 2005 QSAR Comb. Sci. 24 138
[16] White A 2012 MRS Bull. 37 715
[17] Pablo J J d, Jones B, Kovacs C L, Ozolins V and Ramirez A P 2014 Curr. Opin. Solid St. M. 18 99
[18] Tamura T, Karasuyama M, Kobayashi R, Arakawa R, Shiihara Y and Takeuchi I 2017 Modelling Simul. Mater. Sci. Eng. 25 075003
[19] Sun Y T, Bai H Y, Li M Z and Wang W H 2017 J. Phys. Chem. Lett. 8 3434
[20] Wang X L, Xiao R J, Li H and Chen L Q 2017 Phys. Rev. Lett. 118 195901
[21] Shi Y J, Zhang X, Qin L, Jin K, Yuan J, Zhu B Y and Zhu Y 2016 Acta Phys. Sin. 65 058101 (in Chinese)
[22] Wu J and Bozovic I 2015 APL Mater. 3 062401
[23] Yu H S, Yuan J, Zhu B Y and Jin K 2017 Sci. China-Phys. Mech. Astron. 60 087421
[24] Qin M Y, Shi Y J, Wei Z X, Zhu B Y, Yuan J and Jin K 2017 Chin. Sci. Bull. 62 4025 (in Chinese)
[25] Curtarolo S, Hart G L, Nardelli M B, Mingo N, Sanvito S and Levy O 2013 Nat. Mater. 12 191
[26] Jin K, Suchoski R, Fackler S, Zhang Y, Pan X Q, Greene R L and Takeuchi I 2013 APL. Mater. 1 042101
[27] Kennedy K, Stefansky T, Davy G, Zackay V F and Parker E R 1965 J. Appl. Phys. 36 3808
[28] Saadat M, George A E and Hewitt K C 2010 Physica C 470 S59
[29] Hanak J J 1970 J. Mater. Sci. 5 964
[30] Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T and Drautz R 2010 Phys. Rev. Lett. 105 217003
[31] Xiang X D, Sun X D, Briceho G, Lou Y L, Wang K A, Chang H Y, Wallace-Freedman W G, Chen S W and Schultz P G 1995 Science 268 1738
[32] Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn. J. Appl. Phys. 27 L209
[33] Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L and Bi J Q 1987 Chin. Sci. Bull. 6 412 (in Chinese)
[34] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908
[35] Xiang X D, Wang H, Xiang Y and Yan Z K 2015 Sci. Technol. Rev. 33 64 (in Chinese)
[36] Fukumura T, Ohtani M, Kawasaki M, Okimoto Y, Kageyama T, Koida T, Hasegawa T, Tokura Y and Koinuma H 2000 Appl. Phys. Lett. 77 3426
[37] Bednorz J G and Muller K A 1986 Z. Phys. B-Condens. Mater 64 189
[38] Sawa A, Kawasaki M, Takagi H and Tokura Y 2002 Phys. Rev. B 66 014531
[39] Jin K, Butch N P, Kirshenbaum K, Paglione J and Greene R L 2011 Nature 476 73
[40] Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanevic M, Radovic Z and Bozovic I 2013 Nat. Mater. 12 877
[41] Jia Y L, Yang H, Yuan J, Yu H S, Feng Z P, Xia H L, Shi Y J, He G, Hu W, Long Y W, Zhu B Y and Jin K 2015 Acta Phys. Sin. 64 217402 (in Chinese)
[42] Takeuchi I, Chang K, Sharma R P, Bendersky L A, Chang H, Xiang X D, Stach E A and Song C Y 2001 J. Appl. Phys. 90 2474
[43] Chikyowa T, Ahmeta P, Nakajimab K, Koidac T, Takakurad M, Yoshimotod M and Koinuma H 2002 Appl. Surf. Sci. 189 284
[44] Luo Z L, Geng B, Bao J, Liu C H, Liu W H, Gao C, Liu Z G and Ding X L 2005 Rev. Sci. Instrum. 76 095105
[45] Gao C, Bao J, Luo Z L and Liu W H 2006 Acta Phys. Chim. Sin. 22 899 (in Chinese)
[46] Takeuchi I, Yang W, Chang K S, Aronova M A, Venkatesan T, Vispute R D and Bendersky L A 2003 J. Appl. Phys. 94 7336
[47] Arima T, Tokura Y and Uchida S 1993 Phys. Rev. B 48 6597
[48] Clayhold J A, Kerns B M, Schroer M D, Rench D W, Logvenov G, A T Bollinger and Bozovic I 2008 Rev. Sci. Instrum. 79 033908
[49] Hewitt K C, Casey P A, Sanderson R J, White M A and Sun R 2005 Rev. Sci. Instrum. 76 093906
[50] Zhang X, Yu H S, He G, Hu W, Yuan J, Zhu B Y and Jin K 2016 Physica C 525 18
[51] Otani M, Lowhorn N D, Schenck P K, Wong-Ng W, Green M L, Itaka K and Koinuma H 2007 Appl. Phys. Lett. 91 132102
[52] Wei T, Xiang X D, Wallace-Freedman W G and Schultz P G 1996 Appl. Phys. Lett. 68 3506
[53] Gao C, Hu B, Takeuchi I, Chang K S, Xiang X D and Wang G 2005 Meas. Sci. Technol. 16 248
[54] Takeuchi I, Wei T, Duewer F, Yoo Y K, Xiang X D, Talyansky V, Pai S P, Chen G J and Venkatesan T 1997 Appl. Phys. Lett. 71 2026
[55] Hashimoto K, Shibauchi T, Kato T, Ikada K, Okazaki R, Shishido H, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S and Matsuda Y 2009 Phys. Rev. Lett. 102 017002
[56] Gao C and Xiang X D 1998 Rev. Sci. Instrum. 69 3846
[57] Lee J, Long C J, Yang H T, Xiang X D and Takeuchi I 2010 Appl. Phys. Lett. 97 183111
[58] Takahashi H, Imai Y and Maeda A 2016 Rev. Sci. Instrum. 87 063706
[59] Karageorgiev P, Orendi H, Stiller B and Brehmer L 2001 Appl. Phys. Lett. 79 1730
[60] Kirtley J R, Ketchen M B, Stawiasz K G, Sun J Z, Gallagher W J, Blanton S H and Wind S J 1995 Appl. Phys. Lett. 66 1138
[61] Hartmann U 1999 Ann. Rev. Mater. Sci. 29 53
[62] Feng Z P, Yuan J, Li J, Wu X X, Hu W, Shen B, Qin M Y, Zhao L, Zhu B Y, Wang H B, Liu M, Zhang G M, Hu J P, Dong X L, Zhou F, Zhou X J, Takeuchi I, Zhao Z X and Jin K 2018 arXiv: 1807.01273 [cond-mat.supr-con]
[63] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[64] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[65] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[66] McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P and Cava R J 2009 Phys. Rev. B 79 014522
[67] Ohnishi T, Lippmaa M, Yamamoto T, Meguro S and Koinuma H 2005 Appl. Phys. Lett. 87 241919
[68] Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X and Jin K 2018 Sci. Rep. 8 4039
[69] Shen B, Feng Z P, Huang J W, Hu Y, Gao Q, Li C, Xu Y, Liu G D, Yu L, Zhao L, Jin K and Zhou X J 2017 Chin. Phys. B 26 077402
[70] Norman M R 2016 Rep. Prog. Phys. 79 074502
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[13] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!