|
|
Effects of the planarity and heterogeneity of networks on evolutionary two-player games |
Xu-Sheng Liu(刘旭升), Zhi-Xi Wu(吴枝喜), Jian-Yue Guan(关剑月) |
Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks:the weighted planar stochastic lattice (a planar scale-free network) and the random uncorrelated scale-free network with the same degree distribution as the weighted planar stochastic lattice; and two types of homogeneous networks:the hexagonal lattice and the random regular network with the same degree k0=6 as the hexagonal lattice. Using extensive computer simulations, we found that both the planarity and heterogeneity of the network have a significant influence on the evolution of cooperation, either promotion or inhibition, depending not only on the specific kind of game (the Harmony, Snowdrift, Stag Hunt or Prisoner's Dilemma games), but also on the update rule (the Fermi, replicator or unconditional imitation rules).
|
Received: 04 July 2018
Revised: 04 September 2018
Accepted manuscript online:
|
PACS:
|
02.50.Le
|
(Decision theory and game theory)
|
|
87.23.Ge
|
(Dynamics of social systems)
|
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575072 and 11475074) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2017-172). |
Corresponding Authors:
Zhi-Xi Wu, Jian-Yue Guan
E-mail: wuzhx@lzu.edu.cn;guanjy@lzu.edu.cn
|
Cite this article:
Xu-Sheng Liu(刘旭升), Zhi-Xi Wu(吴枝喜), Jian-Yue Guan(关剑月) Effects of the planarity and heterogeneity of networks on evolutionary two-player games 2018 Chin. Phys. B 27 120203
|
[1] |
Smith J M and Szathmary E 1997 The Major Transitions in Evolution (Oxford: Oxford University Press)
|
[2] |
Rong Z, Li X and Wang X 2007 Phys. Rev. E 76 027101
|
[3] |
Rong Z, Yang H X and Wang W X 2010 Phys. Rev. E 82 047101
|
[4] |
Sigmund K 2010 The calculus of selfishness (Princeton: Princeton University Press)
|
[5] |
Quan J and Wang X J 2011 Chin. Phys. B 20 030203
|
[6] |
Zhao L, Zhou X, Liang Z and Wu J R 2012 Chin. Phys. B 21 018701
|
[7] |
Hua D Y 2013 Chin. Phys. B 22 040512
|
[8] |
Allen B, Lippner G, Chen Y T, Fotouhi B, Momeni N, Yau S T and Nowak M A 2017 Nature 544 227
|
[9] |
Yang H X and Tian L 2017 Chaos, Solitons and Fractals 103 159
|
[10] |
Yang H X and Wang Z 2017 J. Stat. Mech.: Theor. Exp. 2017 023403
|
[11] |
Nowak M A 2006 Evolutionary dynamics (Harvard: Harvard University Press)
|
[12] |
Nowak M A and Highfield R 2011 Supercooperators: Altruism, evolution, and why we need each other to succeed (Simon and Schuster)
|
[13] |
Nowak M A, Tarnita C E and Antal T 2010 Phil. Trans. Royal Soc. B: Bio. Sci. 365 19
|
[14] |
Hofbauer J and Sigmund K 1998 Evolutionary games and population dynamics (Cambridge: Cambridge University Press)
|
[15] |
Hofbauer J and Sigmund K 2003 Bull. Am. Math. Soc. 40 479
|
[16] |
Hamilton W D 1964 J. Theor. Bio. 7 17
|
[17] |
Taylor P D 1992 Evolutionary Ecology 6 352
|
[18] |
Foster K R, Wenseleers T and Ratnieks F L 2006 Trends in ecology and evolution 21 57
|
[19] |
Trivers R L 1971 The Quarterly Review of Biology 46 35
|
[20] |
Milinski M 1987 Nature 325 433
|
[21] |
Dugatkin L A 1997 Cooperation among animals: an evolutionary perspective (Oxford: Oxford University Press on Demand)
|
[22] |
Wedekind C and Milinski M 2000 Science 288 850
|
[23] |
Ohtsuki H and Iwasa Y 2004 J. Theor. Bio. 231 107
|
[24] |
Brandt H and Sigmund K 2004 J. Theor. Bio. 231 475
|
[25] |
Williams G C and Williams D C 1957 Evolution 11 32
|
[26] |
Wilson D S 1975 Proc. Natl. Acad. Sci. 72 143
|
[27] |
Taylor P D and Wilson D S 1988 Evolution 42 193
|
[28] |
Michod R E 2000 Darwinian dynamics: evolutionary transitions in fitness and individuality (Princeton: Princeton University Press)
|
[29] |
Nowak M A 2006 Science 314 1560
|
[30] |
Page K M and Nowak M A 2002 J. Theor. Bio. 219 93
|
[31] |
Nowak M A and May R M 1992 Nature 359 826
|
[32] |
Lieberman E, Hauert C and Nowak M A 2005 Nature 433 312
|
[33] |
Killingback T, Doebeli M and Knowlton N 1999 Proc. Roy. Soc. Lond. B: Bio. Sci. 266 1723
|
[34] |
Roca C P, Cuesta J A and Sánchez A 2009 Phys. Rev. E 80 046106
|
[35] |
Hauert C and Doebeli M 2004 Nature 428 643
|
[36] |
Hauert C and Szabó G 2005 Am. J. Phys. 73 405
|
[37] |
Santos F C and Pacheco J M 2005 Phys. Rev. Let. 95 098104
|
[38] |
Santos F C, Pacheco J M and Lenaerts T 2006 Proc. Natl. Acad. Sci. USA 103 3490
|
[39] |
Santos F C and Pacheco J M 2006 J. Evol. Bio. 19 726
|
[40] |
Gómez-Gardeñes J, Campillo M, Floría L M and Moreno Y 2007 Phys. Rev. Lett. 98 108103
|
[41] |
Andrade J S, Herrmann H J, Andrade R F S and da Silva L R 2005 Phys. Rev. Lett. 94 018702
|
[42] |
Zhou T, Yan G and Wang B H 2005 Phys. Rev. E 71 046141
|
[43] |
Buesser P and Tomassini M 2012 Phys. Rev. E 86 066107
|
[44] |
Hassan M K, Hassan M Z and Pavel N I 2010 New J. Phys. 12 093045
|
[45] |
Newman M 2010 Networks: an introduction (Oxford: Oxford University Press)
|
[46] |
Catanzaro M, Boguñá M and Pastor-Satorras R 2005 Phys. Rev. E 71 027103
|
[47] |
Bollobás B 1998 Modern Graph Theory (New York: Springer)
|
[48] |
Langer P, Nowak M A and Hauert C 2008 J. Theor. Bio. 250 634
|
[49] |
Licht A N 1999 Yale J. Intl. Lett. 24 61
|
[50] |
Szabó G and Töke C 1998 Phys. Rev. E 58 69
|
[51] |
Traulsen A, Nowak M A and Pacheco J M 2006 Phys. Rev. E 74 011909
|
[52] |
Traulsen A, Claussen J C and Hauert C 2006 Phys. Rev. E 74 011901
|
[53] |
Press W H and Dyson F J 2012 Proc. Natl. Acad. Sci. 109 10409
|
[54] |
Hao D, Rong Z and Zhou T 2014 Chin. Phys. B 23 078905
|
[55] |
Xie Y B, Zhou T, Bai W J, Chen G, Xiao W K and Wang B H 2007 Phys. Rev. E 75 036106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|