Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 016102    DOI: 10.1088/1674-1056/26/1/016102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Abnormal breakdown of Stokes-Einstein relation in liquid aluminium

Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国)
Laboratory of Advanced Materials Solidification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We present the results of systematic molecular dynamics simulations of pure aluminium melt with a well-accepted embedded atom potential. The structure and dynamics were calculated over a wide temperature range, and the calculated results (including the pair correlation function, self-diffusion coefficient, and viscosity) agree well with the available experimental observations. The calculated data were used to examine the Stokes-Einstein relation (SER). The results indicate that the SER begins to break down at a temperature Tx (~1090 K) which is well above the equilibrium melting point (912.5 K). This high-temperature breakdown is confirmed by the evolution of dynamics heterogeneity, which is characterised by the non-Gaussian parameter α2(t). The maximum value of α2(t), α2,max, increases at an accelerating rate as the temperature falls below Tx. The development of α2,max was found to be related to the liquid structure change evidenced by local five-fold symmetry. Accordingly, we suggest that this high-temperature breakdown of SER has a structural origin. The results of this study are expected to make researchers reconsider the applicability of SER and promote greater understanding of the relationship between dynamics and structure.
Keywords:  diffusion      viscosity      dynamics heterogeneity      local five-fold symmetry  
Received:  24 February 2016      Revised:  07 October 2016      Accepted manuscript online: 
PACS:  66.20.Cy (Theory and modeling of viscosity and rheological properties, including computer simulation)  
  66.10.cg (Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.)  
  02.70.Ns (Molecular dynamics and particle methods)  
  61.20.Ja (Computer simulation of liquid structure)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB012900), the National Natural Science Foundation of China (Grant No. 51171115), the Natural Science Foundation of Shanghai City, China (Grant No. 10ZR1415700), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100073120008), and the Program for New Century Excellent Talents in Universities of China. This work is partially supported by Alexander von Humboldt Foundation.
Corresponding Authors:  Xiu-Jun Han     E-mail:  xjhan@sjtu.edu.cn

Cite this article: 

Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国) Abnormal breakdown of Stokes-Einstein relation in liquid aluminium 2017 Chin. Phys. B 26 016102

[1] Glicksman M E 2011 Principles of Solidification (New York:Springer)
[2] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York:Springer)
[3] Tyrrell H J V and Harris K R 1984 Diffusion in Liquids (London:Butterworths)
[4] Balucani U and Zoppi M 1994 Dynamics of the Liquid State (Oxford:Clarendon)
[5] Einstein A 1956 Investigations on the Theory of Brownian Movement (New York:Dover)
[6] Sutherland W 1905 Philos. Mag. 9 781
[7] Chang I and Sillescu H 1997 J. Phys. Chem. B 101 8794
[8] Bordat P, Affouard F, Descamps M and Müller-Plathe F 2003 J. Phys. -Condens. Matter 15 5397
[9] Kumar S K, Szamel G and Douglas J F 2006 J. Chem. Phys. 124 214501
[10] Chathoth S M and Samwer K 2010 Appl. Phys. Lett. 97 221910
[11] Cicerone M T and Ediger M D 1996 J. Chem. Phys. 104 7210
[12] Gotze W and Sjogren L 1992 Rep. Prog. Phys. 55 241
[13] Das S P 2004 Rev. Mod. Phys. 76 785
[14] Han X J and Schober H R 2011 Phys. Rev. B 83 224201
[15] Jaiswal A, Egami T and Zhang Y 2015 Phys. Rev. B 91 134204
[16] Li F, Liu X J, Hou H Y, Chen G and Chen G L 2011 J. Appl. Phys. 110 013519
[17] Shen B, Liu C Y, Jia Y, Yue G Q, Ke F S, Zhao H B, Chen L Y, Wang S Y, Wang C Z and Ho K M 2014 J. Non-Cryst. Solids 383 13
[18] Jakse N and Pasturel A 2013 Sci. Rep. 3 3135
[19] Recoules V and Crocombette J P 2005 Phys. Rev. B 72 104202
[20] Li H, Wang G H, Zhao J and Bian X F 2002 J. Chem. Phys. 116 24
[21] Smith P M, Elmer J W and Gallegos G F 1999 Scripta Mater. 40 937
[22] Cherne III F J and Deymier P A 2001 Scripta Mater. 45 985
[23] Demmel F, Szubrin D, Pilgrim W C and Morkel C 2011 Phys. Rev. B 84 014307
[24] Kargl F, Weis H, Unruh T and Meyer A 2012 J. Phys.-Conf. Ser. 340 012077
[25] Wang D and Overfelt R A 2002 Int. J. Thermophys. 23 1063
[26] Yamasaki T, Kanatani S, Ogino Y and Inoue A 1993 J. Non-Cryst. Solids 156-158 441
[27] Plimpton S 1995 J. Comput. Phys. 117 1
[28] Mendelev M I, Kramer M J, Becker C A and Asta M 2008 Philos. Mag. 88 1723
[29] Li C H, Han X J, Luan Y W and Li J G 2015 Chin. Phys. B 24 116101
[30] Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196
[31] Nosé S 1984 J. Chem. Phys. 81 511
[32] Hoover W G 1985 Phys. Rev. A 31 1695
[33] Swope W C, Andersen H C, Berens P H and Wilson K 1982 J. Chem. Phys. 76 637
[34] Waseda Y 1980 The Structure of Non-Crystalline Materials (New York:McGraw-Hill)
[35] Morris J R, Dahlborg U and Calvo-Dahlborg M 2007 J. Non-Cryst. Solids 353 3444
[36] Schenk T, Holland-Moritz D, Simonet V, Bellissent R and Herlach D M 2002 Phys. Rev. Lett. 89 075507
[37] Chen K Y, Liu H B, Li X P, Han Q Y and Hu Z Q 1995 J. Phys. -Condens. Matter 7 2379
[38] Rapaport D C 2004 The Art of Molecular Dynamics Simulation, 2004 edition (Cambridge:Cambridge University Press)
[39] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford:Clarendon)
[40] Vogel H 1921 Phys. Z. 22 645
[41] Fulcher G S 1925 J. Am. Ceram. Soc. 8 339
[42] Tammann G and Hesse G 1926 Z. Anorg. Allg. Chem. 156 245
[43] Egelstaff P 1967 An Introduction to the Liquid State (London:Academic Press)
[44] Hansen J P and McDonald I R 2006 Theory of Simple Liquids, 3rd edn. (London:Academic Press)
[45] Rahman A 1964 Phys. Rev. A 136 405
[46] Caprion D, Matsui J and Schober H R 2000 Phys. Rev. Lett. 85 4293
[47] Lee G W, Gangopadhyay A K, Kelton K F, Hyers R W, Rathz T J, Rogers J R and Robinson D S 2004 Phys. Rev. Lett. 93 037802
[48] Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B and Robinson D S 2003 Phys. Rev. Lett. 90 195504
[49] Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X and Tian Z A 2007 Chin. Phys. 16 3747
[50] Zhang J X, Li H, Zhang J, Song X G and Bian X F 2009 Chin. Phys. B 18 4949
[51] Hou Z Y, Liu R S, Tian Z A and Wang J G 2011 Chin. Phys. B 20 066102
[52] Wang L, Zhang Y N, Mao X M and Peng C X 2007 Chin. Phys. Lett. 24 2319
[53] Frank F C 1952 Proc. R. Soc. A 215 43
[54] Kim T H and Kelton K F 2007 J. Chem. Phys. 126 054513
[55] Ganesh P and Widom M 2006 Phys. Rev. B 74 134205
[56] Leocmach M and Tanaka H 2012 Nat. Commun. 3 974
[57] Shen Y T, Kim T H, Gangopadhyay A K and Kelton K F 2009 Phys. Rev. Lett. 102 057801
[58] Di Cicco A, Trapananti A and Faggioni S 2003 Phys. Rev. Lett. 91 135505
[59] Han X J, Li J G and Schober H R 2016 J. Chem. Phys. 144 124505
[60] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[61] Pasturel A, Tasci E S, Sluiter M H F and Jaske N 2010 Phys. Rev. B 81 140202
[62] Jakse N, Nguyen T L T and Pasturel A 2013 J. Appl. Phys. 14 063514
[63] Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207
[64] Finney J L 1970 Proc. R. Soc. A 319 495
[65] Finney J L 1977 Nature 266 309
[66] Delogu F 2009 Phys. Rev. B 79 064205
[67] Itoh K, Hashi K, Aoki K, Mori K, Sugiyama M and Fukunaga T 2007 J. Alloys Compd. 434-435 180
[68] Hao S G, Wang C Z, Kramer M J and Ho K M 2010 J. Appl. Phys. 107 053511
[69] Peng H L, Li M Z and Wang W H 2013 Appl. Phys. Lett. 102 131908
[70] Cheng Y Q, Ma E and Sheng H W 2008 Appl. Phys. Lett. 93 111913
[71] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[72] Wakeda M, Shibutani Y, Ogata S and Park J 2007 Intermetallics 15 139
[73] Cheng Y Q, Cao A J, Sheng H W and Ma E 2008 Acta Mater. 56 5263
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[7] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[8] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[9] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[10] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[11] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[12] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[13] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[14] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[15] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
No Suggested Reading articles found!