Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120301    DOI: 10.1088/1674-1056/27/12/120301
GENERAL Prev   Next  

Quantum metrology with a non-Markovian qubit system

Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴)
College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
Abstract  

The dynamics of the quantum Fisher information (QFI) of phase parameter estimation in a non-Markovian dissipative qubit system is investigated within the structure of single and double Lorentzian spectra. We use the time-convolutionless method with fourth-order perturbation expansion to obtain the general forms of QFI for the qubit system in terms of a non-Markovian master equation. We find that the phase parameter estimation can be enhanced in our model within both single and double Lorentzian spectra. What is more, the detuning and spectral width are two significant factors affecting the enhancement of parameter-estimation precision.

Keywords:  quantum metrology      quantum Fisher information      time-convolutionless      parameter estimation  
Received:  02 August 2018      Revised:  01 September 2018      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: 

Projects supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030310354), the Science Foundation for Enhancing School with Innovation of Guangdong Ocean University (Grant Nos. GDOU2017052504 and GDOU2015050207), the Foundation of Excellent-Young-Backbone Teacher of Guangdong Ocean University (Grant No. HDYQ2017005), and the Fund of University Student Innovation and Entrepreneurship Team of Guangdong Ocean University (Grant No. CCTD201823).

Corresponding Authors:  Wen-Qing Shi, Guo-Bao Xu     E-mail:  swqafj@163.com;xuguobao@126.com

Cite this article: 

Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴) Quantum metrology with a non-Markovian qubit system 2018 Chin. Phys. B 27 120301

[1] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[2] Giovanetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[3] Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67
[4] Dowling J P 1998 Phys. Rev. A 57 4736
[5] Giovannetti V, Lloyd S and Macone L 2004 Science 306 1330
[6] Andersen U L 2013 Nat. Photon. 8 589
[7] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2000 Nat. Phys. 4 810
[8] Wang M B, Zhao D F, Zhang G Y and Zhao K F 2017 Chin. Phys. B 26 100701
[9] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 4649
[10] Zhang J, Long G L, Deng Z, Liu W Z and Lu Z H 2004 Phys. Rev. A 70 062322
[11] Wang H F and Zhang S 2012 Chin. Phys. B 21 100309
[12] Helstrom C W 1976 Quantum detection and estimation theory (New York: Academic Press)
[13] Zheng M K and You L 2018 Acta Phys. Sin 62 189204 (in Chinese)
[14] Xu Lan and Tan Q S 2018 Chin. Phys. B 27 014203
[15] Feng X T, Yuan C H, Chen L Q, Chen J F, Zhang K Y and Zhang W P 2018 Acta Phys. Sin 67 164204 (in Chinese)
[16] Wu Y L, Li R, Rui Y, Jiang H F and Wu H B 2018 Acta Phys. Sin 67 163201 (in Chinese)
[17] Zhang L J and Xiao M 2013 Chin. Phys. B 22 110310
[18] Lu X M, Sun Z, Wang X G, Luo S L and Oh C H 2013 Phys. Rev. A 87 050302
[19] Zhong W, Liu J, Ma J and Wang X G 2014 Chin. Phys. B 23 060302
[20] Yao Y, Xiao X, Ge Li, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336
[21] Liu W F, Ma J and Wang X G 2013 J. Phys. A: Math. Theor. 46 045302
[22] Tan Q S, Huang Y X, Yin X L, Kuang L M and Wang X G 2013 Phys. Rev. A 87 032102
[23] Li N and Luo S L 2013 Phys. Rev. A 88 014301
[24] Alipour S and Rezakhani A T 2015 Phys. Rev. A 91 042104
[25] Zhang J 2014 Phys. Rev. A 89 032128
[26] Zheng Q, Yao Y and Xu X W 2015 Commun. Theor. Phys. 63 279
[27] Huang J, Guo Y N and Xie Q 2016 Chin. Phys. B 25 020303
[28] Stefano M 2007 Phys. Rev. A 75 012330
[29] Wootters W K 1981 Phys. Rev. D 23 357
[30] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[31] Berrada K 2013 Phys. Rev. A 88 035806
[32] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Informatin (Cambridge: Cambridge University Press)
[33] Sun Z, Ma J, Lu X M and Wang X G 2011 Phys. Rev. A 84 022302
[34] Breue H P and Petruccione F 2003 The theory of open quantum systems (Cambridge: Oxford University Press)
[35] Huang J, Fang M F and Liu X 2012 Chin. Phys. B 21 014205
[36] Garraway B M 1997 Phys. Rev. A 55 6
[37] Zhang Y J, Man Z X, Xia Y J and Guo G C 2010 Eur. Phys. J. D 58 397
[38] Nabiev R F, Yeh P and Sachez-Mondragon J J 1993 Phys. Rev. A 47 3380
[39] Lewenstein M, Zakrzewski J and Mossberg T W 1988 Phys. Rev. A 38 808
[40] Li Y and Guo H e-print arXiv: quant ph/09090375
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[4] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[5] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[6] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[7] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[8] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[9] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[10] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[11] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[12] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[13] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[14] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[15] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
No Suggested Reading articles found!