Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 018701    DOI: 10.1088/1674-1056/28/1/018701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons

Chang-Gui Gu(顾长贵), Ping Wang(王萍), Hui-Jie Yang(杨会杰)
Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  

Adaption of circadian rhythms in behavioral and physiological activities to the external light-dark cycle is achieved through the main clock, i.e., the suprachiasmatic nucleus (SCN) of the brain in mammals. It has been found that the SCN neurons differ in the amplitude relaxation rate, which represents the rigidity of the neurons to the external amplitude disturbance. Thus far, the appearance of that difference has not been explained. In the present study, an alternative explanation based on the Poincaré model is given which takes into account the effect of the difference in the entrainment range of the SCN. Both our simulation results and theoretical analyses show that the largest entrainment range is obtained with suitable difference in the case that only a part of SCN neurons are sensitive to the light information. Our findings may give an alternative explanation for the appearance of that difference (heterogeneity) and shed light on the effects of the heterogeneity in the neuronal properties on the collective behaviors of the SCN neurons.

Keywords:  amplitude relaxation rate      entrainment range      heterogeneity  
Received:  13 September 2018      Revised:  13 November 2018      Accepted manuscript online: 
PACS:  87.18.Yt (Circadian rhythms)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.18.Sn (Neural networks and synaptic communication)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11875042, 11505114, and 10975099) and the Program for Professor of Special Appointment (Orientational Scholar) at Shanghai Institutions of Higher Learning, China (Grant Nos. QD2015016 and D-USST02).

Corresponding Authors:  Chang-Gui Gu     E-mail:  gu_changgui@163.com

Cite this article: 

Chang-Gui Gu(顾长贵), Ping Wang(王萍), Hui-Jie Yang(杨会杰) Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons 2019 Chin. Phys. B 28 018701

[1] Pittendrigh C S and Daan S J 1976 Comp. Physiol. A 106 223
[2] Pittendrigh C S 1993 Annu. Rev. Physiol 55 16
[3] Refinetti R 2004 Acta Scientiae Veterinariae 32 1
[4] Refinetti R 2006 Circadian Physiology (2nd Edn.) (Boca Raton: CRC Press) pp. 270-272
[5] Welsh D K, Logothetis D E, Meister M and Reppert S M 1995 Neuron 14 697
[6] Welsh D K, Takahashi J S and Kay S A 2010 Annu. Rev. Physiol. 72 551
[7] Honma S, Nakamura W, Shirakawa T and Honma K 2004 Neurosci. Lett. 358 173
[8] Lee H S, Nelms J L, Nguyen M, Silver R and Lehman M N 2003 Nat. Neurosci. 6 111
[9] Rohling J H T, vanderLeest H T, Michel S, Vansteensel M J and Meijer J H 2011 PLoS ONE 6 e25437
[10] Noguchi T, Watanabe K, Ogura A and Yamaoka S 2004 Eur. J. Neurosci. 20 3199
[11] Hamada T, LeSauter J, Venuti J M and Silver R 2001 J. Neurosci. 21 7742
[12] Li Y and Liu Z 2016 Physica A 457 62
[13] Gu C G, Yang H J and Rohling J H T 2017 Phys. Rev. E 95 032302
[14] Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M and Okamura H 2003 Science 302 1408
[15] Gonze D, Bernard S, Waltermann C, Kramer A and Herzel H 2005 Biophys. J. 89 120
[16] Reghunandanan V and Reghunandanan R J 2006 Circadian Rhythms 4 2
[17] Vosko A M, Schroeder A, Loh D H and Colwell C S 2007 Gen. Comp. Endocrinol. 152 165
[18] Westermark P O, Welsh D K, Okamura H and Herzel H 2009 PLoS Comput. Biol. 5 e1000580
[19] Webb A B, Taylor S R, Thoroughman K A, Doyle F J 3rd and Herzog E D 2012 PLoS Comput. Biol. 8 e1002787
[20] Abraham U, Granada A E, Westermark P O, Heine M, Kramer A and Herzel H 2010 Mol. Syst. Biol. 6 438
[21] Granada A E, Bordyugov G, Kramer A and Herzel H 2013 PLoS ONE 8 e59464
[22] Gu C G, Xu J S, Liu Z H and Rohling J H T 2013 Phys. Rev. E 88 022702
[23] Schmal C, Myung J, Herzel H and Bordyugov G 2015 Front. Neurol. 6 94
[24] Tokuda I T, Ono D, Ananthasubramaniam B, Honma S, Honma K I and Herzel H 2015 Biophys. J. 109 2159
[25] Bordyugov G Abraham U Granada A Rose P Imkeller K Kramer A and Herzel H 2015 J. R. Soc. Interface 12 20150282
[26] Gu C G, Liang X M, Yang H J and Rohling J H T 2016 Sci. Rep. 6 37661
[27] Gu C, Rohling J H T, Liang X M and Yang H J 2016 Phys. Rev. E 93 032414
[28] Leak R K, Card J P and Moore R Y 1999 Brain Res. 819 23
[29] Gu C G, Ramkisoensing A, Liu Z H, Meijer J H and Rohling J H T 2014 J. Biol. Rhythms 29 16
[30] Gu C G, Yang H J and Ruan Z Y 2017 Phys. Rev. E 95 042409
[31] Gu C G, Yang H and Wang M 2017 Phys. Rev. E 96 052207
[1] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[2] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[3] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[4] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[5] Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋). Chin. Phys. B, 2020, 29(2): 026103.
[6] Nonperturbative effects of attraction on dynamical behaviors of glass-forming liquids
Xiaoyan Sun(孙晓燕), Haibo Zhang(张海波), Lijin Wang(王利近), Zexin Zhang(张泽新), and Yuqiang Ma(马余强)\ccclink. Chin. Phys. B, 2020, 29(12): 126201.
[7] Metabasin dynamics of supercooled polymer melt
Jian Li(李健), Bo-Kai Zhang(张博凯). Chin. Phys. B, 2019, 28(12): 126101.
[8] Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells
Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇). Chin. Phys. B, 2019, 28(10): 108701.
[9] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[10] Effects of the planarity and heterogeneity of networks on evolutionary two-player games
Xu-Sheng Liu(刘旭升), Zhi-Xi Wu(吴枝喜), Jian-Yue Guan(关剑月). Chin. Phys. B, 2018, 27(12): 120203.
[11] The determinant factors for map resolutions obtained using CryoEM single particle imaging method
Yihua Wang(王义华), Daqi Yu(余大启), Qi Ouyang(欧阳颀), Haiguang Liu(刘海广). Chin. Phys. B, 2018, 27(12): 128702.
[12] Spatial heterogeneity in liquid-liquid phase transition
Yun-Rui Duan(段云瑞), Tao Li(李涛), Wei-Kang Wu(吴维康), Jie Li(李洁), Xu-Yan Zhou(周戌燕), Si-Da Liu(刘思达), Hui Li(李辉). Chin. Phys. B, 2017, 26(3): 036401.
[13] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102.
[14] Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review
J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier. Chin. Phys. B, 2017, 26(1): 016402.
[15] Dynamic feature analysis in bidirectional pedestrian flows
Xiao-Xia Yang(杨晓霞), Winnie Daamen, Serge Paul Hoogendoorn, Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明). Chin. Phys. B, 2016, 25(2): 028901.
No Suggested Reading articles found!