Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114205    DOI: 10.1088/1674-1056/27/11/114205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear coherent perfect photon absorber in asymmetrical atom-nanowires coupling system

Xiuwen Xia(夏秀文)1,2, Xinqin Zhang(张新琴)1, Jingping Xu(许静平)2, Mutian Cheng(程木田)3, Yaping Yang(羊亚平)2
1 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China;
2 MOE Key Laboratory of Advanced Micro-Structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
3 School of Electrical Engineering & Information, Anhui University of Technology, Maanshan 243002, China
Abstract  

Coherent perfect absorption provides a method of light-controlling-light and has practical applications in optical communications. Recently, a cavity-based nonlinear perfect photon absorption extends the coherent perfect absorber (CPA) beyond the linear regime. As nanowire-based system is a more competitive candidate for full-optical device, we introduce a nonlinear CPA in the single two-level atom-nanowires coupling system in this work. Nonlinear input-output relations are derived analytically, and three contributions of atomic saturation nonlinearity are explicit. The consociation of optical nonlinearity and destructive interference makes it feasible to fabricate a nonlinear monoatomic CPA. Our results also indicate that a nonlinear system may work linearly even when the incoming lights are not weak any more. Our findings show promising applications in full-optical devices.

Keywords:  single-atom system      atom-nanowires coupling      nonlinear coherent perfect absorber  
Received:  19 April 2018      Revised:  22 July 2018      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11864018 and 11574229), Scientific Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ170645), and Doctor Startup Fund of the Natural Science of Jinggangshan University, China (Grant No. JZB16003).

Corresponding Authors:  Xiuwen Xia     E-mail:  jgsuxxw@126.com

Cite this article: 

Xiuwen Xia(夏秀文), Xinqin Zhang(张新琴), Jingping Xu(许静平), Mutian Cheng(程木田), Yaping Yang(羊亚平) Nonlinear coherent perfect photon absorber in asymmetrical atom-nanowires coupling system 2018 Chin. Phys. B 27 114205

[1] Gmachl C F 2010 Nature 467 37
[2] Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901
[3] Kotlicki O and Scheuer J 2014 Opt. Lett. 39 6624
[4] Longhi S and Della Valle G 2012 Phys. Rev. A 85 053838
[5] Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889
[6] Sun Y, Tan W, Li H Q, Li J and Chen H 2014 Phys. Rev. Lett. 112 143903
[7] Xiong H, Si L G, Yang X and Wu Y 2015 Appl. Phys. Lett. 107 091116
[8] Xia X, Xu J and Yang Y 2014 J. Opt. Soc. Am. B 31 2175
[9] Xia X, Xu J and Yang Y 2014 Phys. Rev. A 90 043857
[10] Zheng A, Zhang G, Chen H, Mei T and Liu J 2017 Sci. Rep. 7 14001
[11] Agarwal G S, Di K, Wang L and Zhu Y 2016 Phys. Rev. A 93 063805
[12] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[13] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[14] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[15] Shen J T and Fan S 2009 Phys. Rev. A 79 023838
[16] Shen Y, Bradford M and Shen J T 2011 Phys. Rev. Lett. 107 173902
[17] Xia X, Zhang X, Xu J, Cheng M and Yang Y 2017 J. Appl. Phys. 122 023102
[18] Zhang X Q, Xia X W, Xu J P and Yang Y P 2017 Chin. Phys. B 26 54208
[19] Aroua W, AbdelMalek F and Kamli A A 2014 Opt. Commun. 332 25
[20] Calajó G, Ciccarello F, Chang D and Rabl P 2016 Phys. Rev. A 93 033833
[21] Kien F L and Rauschenbeutel A 2016 Phys. Rev. A 93 013849
[22] Li X, Xie L and Wei L F 2015 Phys. Rev. A 92 063840
[23] Chang D E, Sorensen A S, Demler E A and LukinMD 2007 Nat. Phys. 3 807
[24] Chen Y, Wubs M, Mork J and Koenderink A F 2011 New J. Phys. 13 103010
[25] Kim N C, Ko M C and Choe C I 2015 Plasmonics 10 1447
[26] Tiecke T G, Thompson J D, de Leon N P, Liu L R, Vuletic V and Lukin M D 2014 Nature 508 241
[27] Liu Z Z, Chen Y Y, Yuan J Y and Wan R G 2017 Chin. Phys. B 26 124209
[28] Xue Y L, Zhang K, Feng B H and Li Z Y 2016 Chin. Phys. Lett. 33 074204
[29] Shi J, Fang X, Rogers E T F, Plum E, MacDonald K F and Zheludev N I 2014 Opt. Express 22 21051
[30] Kita S, Takata K, Ono M, Nozaki K, Kuramochi E, Takeda K and Notomi M 2017 APL Photonics 2 046104
[31] Fang X, MacDonald K F and Zheludev N I 2015 Light Sci. Appl. 4 e292
[1] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[2] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[7] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[8] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[9] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[10] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[11] Actively tunable dual-broadband graphene-based terahertz metamaterial absorber
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Chin. Phys. B, 2021, 30(12): 126101.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[14] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[15] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
No Suggested Reading articles found!