Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 110301    DOI: 10.1088/1674-1056/27/11/110301
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

MatCloud, a high-throughput computational materials infrastructure: Present, future visions, and challenges

Xiaoyu Yang(杨小渝)1,2, Zongguo Wang(王宗国)1, Xushan Zhao(赵旭山)1, Jianlong Song(宋健龙)1, Chao Yu(虞超)1,2, Jiaxin Zhou(周嘉欣)1,2, Kai Li(李凯)1
1 Computer Network Information Centre, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

MatCloud provides a high-throughput computational materials infrastructure for the integrated management of materials simulation, data, and computing resources. In comparison to AFLOW, Material Project, and NoMad, MatCloud delivers two-fold functionalities:a computational materials platform where users can do on-line job setup, job submission and monitoring only via Web browser, and a materials properties simulation database. It is developed under Chinese Materials Genome Initiative and is a China own proprietary high-throughput computational materials infrastructure. MatCloud has been on line for about one year, receiving considerable registered users, feedbacks, and encouragements. Many users provided valuable input and requirements to MatCloud. In this paper, we describe the present MatCloud, future visions, and major challenges. Based on what we have achieved, we will endeavour to further develop MatCloud in an open and collaborative manner and make MatCloud a world known China-developed novel software in the pressing area of high-throughput materials calculations and materials properties simulation database within Material Genome Initiative.

Keywords:  high-throughput materials simulation      materials informatics  
Received:  05 June 2018      Revised:  17 August 2018      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  93.85.Bc (Computational methods and data processing, data acquisition and storage)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0701702 and 2016YFB0700501), the National Natural Science Foundation of China (Grant Nos. 61472394 and 11534012), and Science and Technology Department of Sichuan Province, China (Grant No. 2017JZ0001).

Corresponding Authors:  Xiaoyu Yang     E-mail:  kxy@cnic.cn

Cite this article: 

Xiaoyu Yang(杨小渝), Zongguo Wang(王宗国), Xushan Zhao(赵旭山), Jianlong Song(宋健龙), Chao Yu(虞超), Jiaxin Zhou(周嘉欣), Kai Li(李凯) MatCloud, a high-throughput computational materials infrastructure: Present, future visions, and challenges 2018 Chin. Phys. B 27 110301

[1] Yang X Y, Wang Z G, Zhao X S, Song J L, Zhang M M and Liu H 2018 Comput. Material Sci. 146 319
[2] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R H, Nelson L J, Hart G L W, Sanvito S, Buongiorno-Nardelli M, Mingo N and Levy O 2012 Comput. Mater. Sci. 58 227
[3] Jain A, Hautier G, Moore C J, et al. 2011 Comput. Mater. Sci. 50 2295
[4] Zhang M M and Yang X Y 2018 Comput. Mater. Sci. 150 381
[5] Wang Z G, Yang X Y, Wang L G, Wang J, Zhang M M, Zhao X S, Ren J and Zeng Z 2018 Comput. Mater. Sci. 143 55
[6] Lerch D, Wieckhorst O, Hart G L W, Forcade R W and Muller S 2009 Mater. Sci. Eng. 17 055003
[7] Atomic Scale Simulation Final Project, http://publish.illinois.edu/atomicscale/
[8] ABINIT, https://www.abinit.org/
[9] LAMMPS, http://lammps.sandia.gov/
[10] Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 JOM 65 1501
[11] NoMad, https://repository.nomad-coe.eu/
[12] NIMS CompES-X, http://compes-x.nims.go.jp/index_en.html
[13] Optimade API, http://www.optimade.org/spec/
[14] Material Information File, http://citrineinformatics.github.io/mif-documentation/
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[9] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[10] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[13] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[14] Optical scheme to demonstrate state-independent quantum contextuality
Ya-Ping He(何亚平), Deng-Ke Qu(曲登科), Lei Xiao(肖磊), Kun-Kun Wang(王坤坤), and Xiang Zhan(詹翔). Chin. Phys. B, 2022, 31(3): 030305.
[15] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
No Suggested Reading articles found!