Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 110302    DOI: 10.1088/1674-1056/27/11/110302
GENERAL Prev   Next  

Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states

Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹)
School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  

Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements, and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement (POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.

Keywords:  cluster state      hierarchical quantum information splitting      positive operator-valued measurement (POVM)  
Received:  03 June 2018      Revised:  26 August 2018      Accepted manuscript online: 
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61671087).

Corresponding Authors:  Wen-Ming Guo     E-mail:  guowenming_bupt@163.com

Cite this article: 

Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹) Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states 2018 Chin. Phys. B 27 110302

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information. (Cambridge:Cambridge University Press) pp. 43-46
[2] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 53 1829
[3] Liu J, Liu Y M and Zhang Z J 2008 Int. J. Theor. Phys. 47 2353
[4] Xu G, Chen X B, Dou Z, Li J, Liu X and Li Z P 2016 Entropy 18 267
[5] Wang Z Y, Liu Y M, Wang D and Zhang Z J 2007 Opt. Commun. 276 322
[6] Li J, Chen X B, Xu G, Yang Y X and Li Z P 2015 IEEE Commun. Lett. 19 115
[7] Dong H H, Zhang Y F, Zhang Y F and Yin B S 2014 Abstr. Appl. Anal. 2014 738609
[8] Jiang T S, Jiang Z W and Ling S T 2014 Applied Mathematics and Computation 249 222
[9] Zhang Y L, Zhao M X, Su J L, Lu S and Lv K B 2018 Comput. Math. Method. M. 2018 8950794
[10] Pang Z H, Liu G P, Zhou D H and Sun D H 2017 Journal of Systems Science and Complexity 30 1072
[11] Gottesman D 2000 Phys. Rev. A 61 042311
[12] Wang X W, Xia L X, Wang Z Y and Zhang D Y 2010 Opt. Commun. 283 1196
[13] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[14] Wang X W, Zhang D Y, Tang S Q, Zhan X G and You K M 2010 Int. J. Theor. Phys. 49 2691
[15] Wang X W, Zhang D Y, Tang S Q and Xie L J 2011 J. Phys. B:At.Mol. Opt. Phys. 44 035505
[16] Xu G, Wang C and Yang Y X 2014 Quantum Inf. Process. 13 43
[17] Peng J Y and Mo Z W 2013 Int. J. Quantum Inf. 11 1350004
[18] Peng J Y, Bai M Q and Mo Z W 2014 Chin. Phys. B 23 010304
[19] Bai M Q and Mo Z W 2013 Quantum Inf. Process. 12 1053
[20] Wang Z Y, Wang D, Liu J and Shi S H 2006 Commun. Theor. Phys. 46 859
[21] Zhou S W, Liu X P, Chen B and Liu H X 2018 Complexity 2018 1586846
[22] Dou Z, Xu G, Chen X B, Liu X and Yang Y X 2018 Sci. China-Inf. Sci. 61 022501
[23] Cui Y J and Sun J X 2013 Fixed Point Theory and Applications. 2013 345
[24] Xu G, Chen X B, Li J, Wang C, Yang Y X and Li Z P 2015 Quantum Inf. Process. 14 4297
[25] Wei Z H, Chen X B, Niu X X and Yang Y X 2015 Int. J. Theor. Phys. 54 2505
[26] Li Z Z, Xu G, Chen X B, Sun X M and Yang Y X 2016 IEEE Commun. Lett. 20 2470
[27] Xu G, Chen X B, Dou Z, Yang Y X and Li Z P 2015 Quantum Inf. Process. 14 2959
[28] Ziman M and Buzek V 2005 Phys. Rev. A 72 039903
[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[3] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[4] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[5] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[6] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2014, 23(2): 020313.
[7] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[8] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[9] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[10] Controlled quantum state sharing of arbitrary two-qubit states with five-qubit cluster states
Wang Dong(王东), Zha Xin-Wei(查新未), Lan Qian(兰倩), Li Ning(李宁), and Wei Jing(卫静) . Chin. Phys. B, 2011, 20(9): 090305.
[11] Preparation of cluster states with trapped electrons on a liquid helium surface
Ai Ling-Yan(艾凌艳), Shi Yan-Li(石艳丽), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2011, 20(10): 100303.
[12] Large-scale cluster state generation with nuclear spins in diamonds
Chen Qiong(陈琼), Feng Mang(冯芒), Du Jiang-Feng(杜江峰), and Hai Wen-Hua(海文华) . Chin. Phys. B, 2011, 20(1): 010308.
[13] Fast generation of cluster states in a linear ion trap
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Zhang Xiao-Long(张小龙), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(9): 090317.
[14] Generation of entangled coherent states through cavity-assisted interaction
Chen Xiao-Dong(陈晓东), Gu Yong-Jian(顾永建), Liang Hong-Hui(梁鸿辉), Ni Bin-Bin(倪彬彬), and Lin Xiu-Min(林秀敏) . Chin. Phys. B, 2010, 19(4): 040310.
[15] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
No Suggested Reading articles found!