CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of Mn doping on mechanical properties and electronic structure of WCoB ternary boride by first-principles calculations |
Tong Zhang(张桐)1,2, Hai-Qing Yin(尹海清)1,2, Cong Zhang(张聪)1, Xuan-Hui Qu(曲选辉)1,2, Qing-Jun Zheng(郑清军)3 |
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing Key Laboratory of Materials Genome Initiative, University of Science and Technology Beijing, Beijing 100083, China;
3 Kennametal Inc, 1600 Technology Way, PA 15650, USA |
|
|
Abstract The first-principles calculations are performed to investigate the structural, mechanical property, hardness, and electronic structure of WCoB with 0, 8.33, 16.67, 25, and 33.33 at.% Mn doping content and W2CoB2 with 0, 10, and 20 at.% Mn doping content. The cohesive energy and formation energy indicate that all the structures can retain good structural stability. According to the calculated elastic constants, Mn is responsible for the increase of ductility and Poisson's ratio and the decrease of Young's modulus, shear modulus, and bulk modulus. By using the population analysis and mechanical properties, the hardness is characterized through using the five hardness models and is found to decrease with the Mn doping content increasing. The calculated electronic structure indicates that the formation of a B-Mn covalent bond and a W-Mn metallic bond contribute to the decreasing of the mechanical properties.
|
Received: 17 April 2018
Revised: 20 July 2018
Accepted manuscript online:
|
PACS:
|
71.15.Dx
|
(Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Key Research and Development Program, China (Grant No. 2016YFB0700503), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the Beijing Science and Technology Plan, China (Grant No. D161100002416001), the National Natural Science Foundation of China (Grant No. 51172018), and the Kennametal Inc., China. |
Corresponding Authors:
Hai-Qing Yin
E-mail: hqyin@ustb.edu.cn
|
Cite this article:
Tong Zhang(张桐), Hai-Qing Yin(尹海清), Cong Zhang(张聪), Xuan-Hui Qu(曲选辉), Qing-Jun Zheng(郑清军) Effect of Mn doping on mechanical properties and electronic structure of WCoB ternary boride by first-principles calculations 2018 Chin. Phys. B 27 107101
|
[1] |
Takagi K 2006 J. Solid State Chem. 179 2809
|
[2] |
Yamasaki Y, Nishi M and Takagi K 2004 J. Solid State Chem. 177 551
|
[3] |
Nishiyama K, Keino M, Furuyama Y, et al. 2003 J. Alloys Compd. 355 97
|
[4] |
Takagi K, Ohira S, Ide T, Watanabe S and Kondo Y 1987 Metal Powder Rep. 42 483
|
[5] |
Komai M, Yamasaki Y, Takagi K I and Watanabe T 1992 Adv. Powder Metal. Particulate Mater. 8 81
|
[6] |
Tashiro H, Hirata K, Yamasaki Y and Takagi K 2007 Mater. Sci. Forum. Trans. Tech. Pub. 534 377
|
[7] |
Haschke H, Nowotny H and Benesovsky F 1966 Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 97 1459
|
[8] |
Hofmann H and Petzow G 1986 J. Less Common. Metals 117 121
|
[9] |
Zahariev Z T and Marinov M I 1993 J. Alloys Compd. 201 1
|
[10] |
Hu B, Pan Y, Wang Q, Zhou H and Xu M 2011 Heat Treat. Metals 6 008
|
[11] |
Takagi K 1987 Int. J. Powder Met. 23 157
|
[12] |
Ke D Q, Pan Y J, Xu Y Y, Yang L and Wu R 2017 Appl. Mech. Mater. Trans. Tech. Pub. 872 56
|
[13] |
Yu H, Zheng Y, Liu W, Zheng J and Xiong W 2010 Mater. Design 31 2680
|
[14] |
Yu H, Zheng Y, Liu W, Zheng J and Xiong W 2010 Int. J. Refrac. Metals Hard Mater. 28 286
|
[15] |
Yamasaki Y, Nishi M and Takagi K 2004 J. Solid State Chem. 177 551
|
[16] |
Yang F, Wu Y, Han J and Meng J 2016 J. Alloys Compd. 665 373
|
[17] |
Takagi K 2003 Metals Mater. Int. 9 467
|
[18] |
Komai M, Isobe Y and Takagi K 1993 J. Jpn. Soc. Powder Powder Metallurgy 40 38
|
[19] |
Ke D, Pan Y, Lu X, Hong B and Zhang H 2015 Cera. Int. 41 15235
|
[20] |
Wang X, Chen C, Feng S, Wei X and Li Y 2017 Chin. Phys. B 26 127402
|
[21] |
Zhang Z X, Zhang Y, Xue W H, Jia W, Zhang C L, Li C X and Cui P 2017 Chin. Phys. B 26 123102
|
[22] |
He W, Huang H, Liu Z and Ma X 2018 Chin. Phys. B 27 016201
|
[23] |
Xuan S K 2017 Acta Phys. Sin. 66 237401 (in Chinese)
|
[24] |
Lin Y H, Tong C C, Pan Y, Liu W Y and Singh A 2017 Mod. Phys. Lett. B 31 1750138
|
[25] |
Wang S, Pan Y, Lin Y and Tong C 2018 Comput. Mater. Sci. 146 18
|
[26] |
Xu Y, Pan Y, Ke D, Yang L and Wang P 2017 Mater. Sci. Technol. 25 59
|
[27] |
Hohenberg P and Kohn W 1965 Phys. Rev. 136 B864
|
[28] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[30] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[31] |
Kuzma I B and Chepiga M V 1969 X-ray investigation of the tungsten-iron-boron and tungsten-cobalt-boron systems. Lvov State Univ., 1969
|
[32] |
Rieger W, Nowotny H and Benesovsky F 1966 Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 97 378
|
[33] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[34] |
Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
|
[35] |
Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
|
[36] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[37] |
Lewandowski J J, Wang W H and Greer A L 2005 Phil. Mag. Lett. 85 77
|
[38] |
Wang J X, Chen Z B and Gao Y C 2018 J. Phys. Chem. Solids 116 72
|
[39] |
Aouadi S M 2006 J. Appl. Phys. 99 053507
|
[40] |
Reuss A 1929 J. Appl. Math. Mech. 9 49
|
[41] |
Zhou C T, Xing J D, Xiao B, Feng J, Xie X J and Chen Y H 2009 Comput. Mater. Sci. 44 1056
|
[42] |
Pugh S F 1954 London, Edinburgh Dublin Phil. Mag. J. Sci. 45 823
|
[43] |
Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
|
[44] |
Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502
|
[45] |
Zhang T, Yin H, Zhang C, Qu X H and Zheng Q J 2018 Mod. Phys. Lett. B 2018 1850240
|
[46] |
Yu H B, Wang W H and Bai H Y 2010 Appl. Phys. Lett. 96 081902
|
[47] |
Jiang P G, Wang Z B, Yan Y B and Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)
|
[48] |
Xu W W, Han J J, Wang Y, Wang C P, Liu X J and Liu Z K 2013 Acta Materialia 61 5437
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|