Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 106801    DOI: 10.1088/1674-1056/27/10/106801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Adsorption and diffusion of F2 molecules on pristine graphene

Yong Yang(杨勇)1,2, Fu-Chi Liu(刘富池)1, Yoshiyuki Kawazoe(川添良幸)3,4
1 College of Physics and Technology, Guangxi Normal University, Guilin 541004, China;
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
3 New Industry Creation Hatchery Center(NICHe), Tohoku University, 6-6-4 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan;
4 Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathurm, 603203, TN, India
Abstract  

The adsorption and diffusion of F2 molecules on pristine graphene are studied by using first-principles calculations. For the diffusion of F2 from molecular state in gas phase to the dissociative adsorption state on graphene surface, a kinetic barrier is identified, which explains the inertness of graphene in molecular F2 at room temperature, and its reactivity with F2 at higher temperatures. Study of the diffusion of F2 molecules on graphene surface determines the energy barrier along the optimal diffusion pathway, which conduces to the understanding of the high stability of fluorographene.

Keywords:  adsorption      diffusion      F2 molecule      graphene      first-principles calculations  
Received:  15 May 2018      Revised:  01 August 2018      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11664003 and 11474285), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2015GXNSFAA139015), and the Scientific Research and Technology Development Program of Guilin, China (Grant No. 2016012002).

Corresponding Authors:  Yong Yang     E-mail:  wateratnanoscale@hotmail.com,yyang@theory.issp.ac.cn

Cite this article: 

Yong Yang(杨勇), Fu-Chi Liu(刘富池), Yoshiyuki Kawazoe(川添良幸) Adsorption and diffusion of F2 molecules on pristine graphene 2018 Chin. Phys. B 27 106801

[1] Schedin F, Geim A K, Morozov S V, et al. 2007 Nat. Mater. 6 652
[2] Elias D C, Nair R R, Mohiuddin T M G, et al. 2009 Science 323 610
[3] Nair R R, Ren W, Jalil R, et al. 2010 Small 6 2877
[4] Sun Z, Pint C L, Marcano D C, et al. 2011 Nat. Commun. 2 559
[5] Wu J, Rodrigues M T F, Vajtai R and Ajayan P M 2016 Adv. Mater. 28 6239
[6] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[7] Yuan S, Rösner M, Schulz A, Wehling T O and Katsnelson M I 2015 Phys. Rev. Lett. 114 047403
[8] Hong X, Zou K, Wang B, Cheng S H and Zhu J 2012 Phys. Rev. Lett. 108 226602
[9] Zheng Y, Wan X, Tang N, Feng Q, Liu F and Du Y 2015 Carbon 89 300
[10] Coey J M D 2005 Solid State Sci. 7 660
[11] San X J, Han B and Zhao J G 2016 Chin. Phys. B 25 037305
[12] An Y F, et al. 2017 Chin. Phys. Lett. 34 017302
[13] Watanabe N, Nakajima T and Touhara H 1988 Graphite Fluorides (Amsterdam:Elsevier)
[14] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[15] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[16] Blöchl P E 1994 Phys. Rev. B 50 17953
[17] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Mills G, Jonsson H and Schenter G K 1995 Surf. Sci. 324 305
[21] Jonsson H, Mills G and Jacobsen K W 1998 "Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions", in Classical and Quantum Dynamics in Condensed Phase Simulations eds. Berne B J, Ciccotti G and Coker D F (Singapore:World Scientific)
[22] Purwanto W, Al-Saidi W A, Krakauer H and Zhang S 2008 J. Chem. Phys. 128 114309
[23] Khait Yu L, Weil R, Beserman R, Beyer W and Wagner H 1990 Phys. Rev. B 42 9000
[24] Petrik N G and Kimmel G A 2007 Phys. Rev. Lett. 99 196103
[25] Petrik N G and Kimmel G A 2015 J. Phys. Chem. C 119 23059
[26] Bader R 1990 Atoms in Molecules:A Quantum Theory (New York:Oxford University Press)
[27] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[8] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[15] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
No Suggested Reading articles found!