PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Dense pair plasma generation and its modulation dynamics in counter-propagating laser field |
Wei-Yuan Liu(刘维媛)1,2, Wen Luo(罗文)1, Tao Yuan(袁韬)2,3, Ji-Ye Yu(余继晔)2,3, Min Chen(陈民)2,3 |
1 School of Nuclear Science and Technology, University of South China, Hengyang 421001, China;
2 Key Laboratory for Laser Plasmas(MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract With two-dimensional quantum electrodynamics (QED) particle-in-cell simulations, a dense electron-positron (e-e+) pair generation from laser-solid interactions is demonstrated. When the interaction of two linearly polarized laser pulses with a thin target enters into the relativistic transparency regime, a stable standing wave (SW) field can be formed by the overlap of the two counter-propagating laser pulses directly. The present study aims to clarify the effects of the SW field on the dynamics of e-e+ pair plasmas. Our results indicate that under the combined effect of the SW field and radiation reaction (RR) effect, the created e-e+ pairs can be trapped into the electric field nodes when the field strength is strong. The trapping effect contributes to the generation of γAV ≥ 400 and ultra-dense pair plasmas in the two-side irradiation scheme. Despite different laser intensities, these pair plasmas have a Maxwellian spectral distribution with a peak energy of 150 MeV. Besides, the periodical modulation of the average energy, spatial, phase-space, and angular patterns of the e-e+ pair plasmas can be triggered. In the angular patterns, as long as the SW field exists, pair plasmas can be pinched along the laser polarization direction. These results may offer a better understanding of the laser-solid interactions in the experiments when 10-PW laser facilities come into operation in the future.
|
Received: 31 May 2018
Revised: 10 August 2018
Accepted manuscript online:
|
PACS:
|
52.27.Ep
|
(Electron-positron plasmas)
|
|
52.27.Ny
|
(Relativistic plasmas)
|
|
52.30.-q
|
(Plasma dynamics and flow)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01504), the National Natural Science Foundation of China (Grant Nos. 11347028, 11405083, and 11675075), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2315), and the Youth Talent Project of Hunan Province, China (Grant No. 2018RS3096). |
Corresponding Authors:
Wen Luo, Min Chen
E-mail: wen.luo@usc.edu.cn;minchen@sjtu.edu.cn
|
Cite this article:
Wei-Yuan Liu(刘维媛), Wen Luo(罗文), Tao Yuan(袁韬), Ji-Ye Yu(余继晔), Min Chen(陈民) Dense pair plasma generation and its modulation dynamics in counter-propagating laser field 2018 Chin. Phys. B 27 105202
|
[1] |
Nerush E N, Kostyukov I Y, Fedotov A M, Narozhny N B, Elkina N V and Ruhl H 2011 Phys. Rev. Lett. 106 035001
|
[2] |
Yu T P, Sheng Z M, Yin Y, Zhuo H B, Ma Y Y, Shao F Q and Pukhov A 2014 Phys. Plasmas 21 053105
|
[3] |
Zhu X L, Yin Y, Yu T P, Liu J J, Zou D B, Ge Z Y, Wang W Q and Shao F Q 2015 Phys. Plasmas 22 093109
|
[4] |
Liu J J, Yu T P, Yin Y, Zhu X L and Shao F Q 2016 Opt. Express 24 15978
|
[5] |
Yu J Y, Yuan T, Liu W Y, Chen M, Luo W, Weng S M and Sheng Z M 2018 Plasma Phys. Control. Fusion 60 044011
|
[6] |
Yuan T, Yu J Y, Liu W Y, Weng S M, Yuan X H, Luo W, Chen M, Sheng Z M and Zhang J 2018 Plasma Phys. Control. Fusion 60 065003
|
[7] |
Luo W, Liu W Y, Yuan T, Chen M, Yu J Y, Li F Y, Sorbo D Del, Ridgers C P and Sheng Z M 2018 Sci. Rep. 8 8400
|
[8] |
Luo W, Wu S D, Liu W Y, Ma Y Y, Li F Y, Yuan T, Yu J Y, Chen M and Sheng Z M 2018 Plasma phys. Control. Fusion 60 095006
|
[9] |
Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Express 16 2109
|
[10] |
See www.extreme-light-infrastructure.eu for "Extreme Light Infrastructure European Project"
|
[11] |
See www.xcels.iapras.ru for "Exawatt Center for Extreme Light Studies"
|
[12] |
Mourou G, Brocklesby B, Tajima T and Limpert J 2013 Nat. Photon. 7 258
|
[13] |
Hernandez G C, Blake S P, Chekhlov O, Clarke R J, Dunne A M, Galimberti M, Hancock S, Holligan P, Lyachev A, Matousek P, Musgrave I, Neely D, Norreys P A, Ross I, Tang Y X, Winstone T, Wyborn B E and Collier J 2010 J. Phys. Conf. Ser. 244 032006
|
[14] |
Marklund M and Shukla P K 2006 Rev. Mod. Phys. 78 591
|
[15] |
Ehlotzky F, Krajewska K and Kamiński J Z 2009 Rep. Prog. Phys. 72 046401
|
[16] |
Mourou G A, Tajima T and Bulanov S V 2006 Rev. Mod. Phys. 78 309
|
[17] |
Nerush E and Kostyukov I 2007 Phys. Rev. E 75 057401
|
[18] |
Chen H, Meyerhofer D D, Wilks S C, Cauble R, Dollar F, Falk K, Gregori G, Hazi A, Moses E I, Murphy C D, Myatt J, Park J, Seely J, Shepherd R, Spitkovsky A, Stoeckl C, Szabo C I, Tommasini R, Zulick C and Beiersdorfer P 2011 High Energ. Dens. Phys. 7 225
|
[19] |
Chen H, Fiuza F, Link A, Hazi A, Hill M, Hoarty D, James S, Meyerhofer D D, Myatt J, Park J, Sentoku Y and Williams G J 2015 Phys. Rev. Lett. 114 215001
|
[20] |
Liu J X, Ma Y Y, Zhao J, Yu T P, Yang X H, Gan L F, Zhang G B, Yan J F, Zhuo H B, Liu J J, Zhao Y and Kawata S 2015 Phys. Plasmas 22 103102
|
[21] |
Xu T, Shen B, Xu J, Li S, Yu Y, Li J, Lu X, Wang C, Wang X, Liang X, Leng Y, Li R and Xu Z 2016 Phys. Plasmas 23 033109
|
[22] |
Yuan T, Chen M, Yu J Y, Liu W Y, Luo W, Weng S M and Sheng Z M 2017 Phys. Plasmas 24 063104
|
[23] |
Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu C E and Pukhov A 2016 Nat. Commun. 7 13686
|
[24] |
Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
|
[25] |
Danielson J R, Dubin D H E, Greaves R G and Surko C M 2015 Rev. Mod. Phys. 87 247
|
[26] |
Sarri G, Poder K, Cole J M and Zepf M 2015 Nat. Commun. 6 6747
|
[27] |
Chen H, Wilks S C, Meyerhofer D D and Beiersdorfer P 2010 Phys. Rev. Lett. 105 015003
|
[28] |
Xu T, Shen B, Xu J, Li S, Yu Y, Li J, Lu X, Wang C, Wang X, Liang X, Leng Y, Leng Y, Li R and Xu Z 2016 Phys. Plasmas 23 033109
|
[29] |
Breit G and Wheeler J A 1934 Phys. Rev. 46 1087
|
[30] |
Di Piazza A, Hatsagortsyan K Z and Keitel C H 2010 Phys. Rev. Lett. 105 220403
|
[31] |
Mackenroth F and Di Piazza A 2011 Phys. Rev. A 83 032106
|
[32] |
Ritus V I 1985 J. Soviet Laser Res. 6 497
|
[33] |
Erber T 1966 Rev. Mod. Phys. 38 626
|
[34] |
Kirk J G, Bell A R and Arka I 2009 Plasma Phys. Contr. F 51 085008
|
[35] |
Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L and Bell A R 2012 Phys. Rev. Lett. 108 165006
|
[36] |
Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I C E and Chen M 2015 Phys. Plasmas 22 063112
|
[37] |
Chang H X, Qiao B, Xu Z, Xu X R, Zhou C T, Yan X, Wu S Z, Borghesi M, Zepf M and He X T 2015 Phys. Rev. E 92 053107
|
[38] |
Ridgers C P, Kirk J G, Duclous R, Blackburn T, Brady C S, Bennett K, Arber T D and Bell A R 2014 J. Comput. Phys. 260 273
|
[39] |
Liu W Y, Luo W, Yuan T, Yu J Y, Chen M and Sheng Z M 2017 Phys. Plasmas 24 103130
|
[40] |
Hoshino M, Arons J, Gallant Y A and Max C E 1992 Astrophys. J. 390 454
|
[41] |
Ji L L, Pukhov A, Kostyukov I Y and Balo I 2014 Phys. Rev. Lett. 112 145003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|