Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060702    DOI: 10.1088/1674-1056/28/6/060702
GENERAL Prev   Next  

Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy

Yuan-Yuan Ma(马媛媛), Hao-Chong Huang(黄昊翀), Si-Bo Hao(郝思博), Wei-Chong Tang(汤伟冲), Zhi-Yuan Zheng(郑志远), Zi-Li Zhang(张自力)
School of Science, China University of Geosciences, Beijing 100083, China
Abstract  

Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating rates of the ambient temperature. Furthermore, the water molecules of copper sulfate pentahydrate can be quantitatively characterized due to the high sensitivity of the terahertz wave to water molecules. Based on such results, the status of water incorporated in mineral opal is also characterized using terahertz time-domain spectroscopy. It indicates that terahertz technology can be considered as an efficient method to detect the dehydration of minerals.

Keywords:  copper sulfate pentahydrate      water status      terahertz time-domain spectroscopy  
Received:  21 February 2019      Revised:  02 April 2019      Accepted manuscript online: 
PACS:  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  29.30.-h (Spectrometers and spectroscopic techniques)  
  33.20.-t (Molecular spectra)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61805214) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2652017142).

Corresponding Authors:  Wei-Chong Tang, Zi-Li Zhang     E-mail:  hhcistaurus@hotmail.com;zlzhang@cugb.edu.cn

Cite this article: 

Yuan-Yuan Ma(马媛媛), Hao-Chong Huang(黄昊翀), Si-Bo Hao(郝思博), Wei-Chong Tang(汤伟冲), Zhi-Yuan Zheng(郑志远), Zi-Li Zhang(张自力) Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy 2019 Chin. Phys. B 28 060702

[1] Fu X, Yang G, Sun J and Zhou J 2012 J. Phys. Chem. A 116 7314
[2] Ruggiero M T and Korter T M 2016 J. Phys. Chem. A 120 227
[3] White R L 2012 Thermochim. Acta 528 58
[4] Hui H, Xu Y and Pan M E 2016 Sci. Chin. Earth Sci. 59 1157
[5] Peslier A H 2010 J. Volcanol. Geotherm. Res. 197 239
[6] Reynard B and Bass J D 2014 J. Metamorph. Geol. 32 479
[7] Kameda J and Hirauchi K I 2018 Mar. Geol. 403 191
[8] Karato S I 2003 Subduction Factory 138 135
[9] Rossman G R 2006 Rev. Mineral. Geochem. 62 1
[10] Huang H, Wang D, Rong L, Panezai S, Zhang D, Qiu P, Gao L, Gao H, Zheng H and Zheng Z 2018 Opt. Commun. 426 612
[11] Dong C, Bao R M, Zhao K, Xu C H, Jin W J and Zhong S X 2014 Chin. Phys. B 23 127802
[12] Zhu J, Zhan H L, Zhao K, Miao X Y, Zhou Q and Yue W Z 2019 Chin. Phys. B 28 020204
[13] Huang H, Wang D, Li W, Rong L, Taylor Z D, Deng Q, Li B, Wang Y, Wu W and Panezai S 2017 Opt. Lasers Eng. 94 76
[14] Liu W, Liu C, Yu J, Zhang Y, Li J, Chen Y and Zheng L 2018 Food Chem. 251 86
[15] Liu H, Fan Y X, Li L, Chen H G, Wang P F and Tao Z Y 2018 Opt. Express 26 27279
[16] Wang Y, Ren Y, Chen L, Song C, Li C, Zhang C, Xu D and Yao J 2018 Chin. Phys. B 27 114204
[17] Chen H, Ma S H, Yan W X, Wu X M and Wang X Z 2013 Chin. Phys. Lett. 30 030702
[18] Yan B, Fang J, Qin S, Liu Y, Chen L, Chen S, Li R and Han Z 2017 Chin. Phys. B 26 097802
[19] Du H W and Yang N 2014 Chin. Phys. Lett. 31 124201
[20] Hao S B, Huang H C, Ma Y Y, Liu S J, Zhang Z L and Zhang Z Y 2019 Optik 3 102
[21] Tang W, Zhang Z, Xiao K, Zhao C and Zheng Z 2017 Front. Optoelectron. 10 409
[22] Zhan H, Chen R, Miao X, Li Y, Zhao K, Hao S and Chen X 2018 IEEE Trans. Terahertz Sci. Technol. 8 477
[23] Liu P, Zhang X, Pan B, Wei M, Zhang Z and Harrington P B 2018 International Journal of Environmental Research
[24] Ruggiero M T, Bardon T, Strlic M, Taday P F and Korter T M 2014 J. Phys. Chem. A 118 10101
[25] Thomas P S, Heide K and Földvari M 2015 J. Therm. Anal. Calorim. 120 95
[1] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[2] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[3] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[4] Optical response of tunable terahertz plasmon in a grating-gated graphene transistor
Bo Yan(闫博), Jingyue Fang(方靖岳), Shiqiao Qin(秦石乔), Yongtao Liu(刘永涛), Li Chen(陈力), Shuang Chen(陈爽), Renbing Li(李仁兵), Zhen Han(韩震). Chin. Phys. B, 2017, 26(9): 097802.
[5] Far-infrared conductivity of CuS nanoparticles measured by terahertz time-domain spectroscopy
Yang Yu-Ping(杨玉平), Zhang Zhen-Wei(张振伟), Shi Yu-Lei(施宇蕾), Feng Shuai(冯帅), and Wang Wen-Zhong(王文忠). Chin. Phys. B, 2010, 19(4): 043302.
[6] The transmission enhancement of a THz pulse through an Ag/Ag2O layer detected by terahertz time-domain spectroscopy
Chen Hua(陈华) and Wang Li(汪力). Chin. Phys. B, 2009, 18(7): 2785-2787.
No Suggested Reading articles found!