Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 013301    DOI: 10.1088/1674-1056/27/1/013301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Attosecond transient absorption spectroscopy: Comparative study based on three-level modeling

Zeng-Qiang Yang(杨增强)1, Di-Fa Ye(叶地发)1, Li-Bin Fu(傅立斌)1,2,3
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 CAPT, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, China;
3 Center for Fusion Energy Science and Technology, China Academy of Engineering Physics, Beijing 100088, China
Abstract  In the present paper, the time-resolved transient absorption spectroscopy of helium atoms is investigated based on the three-level modeling. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser field. The odd excited state are populated from the ground state by the XUV pulse due to the dipole selection rule, and probed by the time-delayed IR laser. The time-resolved transient absorption spectroscopy based on the different coupling mechanism demonstrate some different features, the photoabsorption spectrum based on three-level model with rotating wave approximation (RWA) cannot repeat the fast oscillation and the sideband structure which have been observed in the previous experimental investigation. The dressing effect of IR laser pulse on the ground state can contribute new interference structures in the photoabsorption spectrum.
Keywords:  extreme ultraviolet (XUV)      photoabsorption      time delay      three-level model  
Received:  14 June 2017      Revised:  11 October 2017      Accepted manuscript online: 
PACS:  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  32.30.Jc (Visible and ultraviolet spectra)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674034 and 11564033) and the Foundation of President of the China Academy of Engineering Physics (Grant No. 2014-1-029).
Corresponding Authors:  Zeng-Qiang Yang, Zeng-Qiang Yang     E-mail:  yangzq@ymail.com;lbfu@iapcm.ac.cn

Cite this article: 

Zeng-Qiang Yang(杨增强), Di-Fa Ye(叶地发), Li-Bin Fu(傅立斌) Attosecond transient absorption spectroscopy: Comparative study based on three-level modeling 2018 Chin. Phys. B 27 013301

[1] Krausz F and Ivanov M Y 2009 Rev. Mod. Phys. 81 163
[2] Li F, Wei L and He Z C 2015 Chin. Phys. B 24 043301
[3] Yao T, Jiang W C, Wu P and Peng L Y 2016 Chin. Phys. B 25 073202
[4] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Klinget M F, Leone S R and Krausz F 2010 Nature 466 739
[5] Wirth A, Hassan M T, Grgura I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A and Azzeeret A M 2011 Science 334 195
[6] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U and Krausz F 2002 Nature 419 803
[7] Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U and Chang Z 2010 Phys. Rev. Lett. 105 143002
[8] Gilbertson S, Chini M, Feng X, Khan S, Wu Y and Chang Z 2010 Phys. Rev. Lett. 105 263003
[9] Chini M, Zhao B, Wang H, Cheng Y, Hu S X and Chang Z 2012 Phys. Rev. Lett. 109 073601
[10] Chen S M, Bell J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R and Schafer K J 2012 Phys. Rev. A 86 063408
[11] Chen S, Wu M, Gaarde M B and Schafer K J 2012 Phys. Rev. A 87 033408
[12] Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S and Chang Z 2013 Sci. Rep. 3 1105
[13] Pfeiffer A N and Leone S R 2012 Phys. Rev. A 85 053422
[14] Wu M, Chen S, Gaarde M and Schafer K 2013 Phys. Rev. A 88 043416
[15] Wang X W, Chini M, Cheng Y, Wu Y, Tong X M and Chang Z 2013 Phys. Rev. A 87 063413
[16] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H and Pfeifer T 2013 Science 340 716
[17] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y Z, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñ ero J, Martín F and Pfeifer T 2014 Nature 516 374
[18] Chu W C and Lin C D 2012 Phys. Rev. A 85 013409
[19] Argenti L, Ott C, Pfeifer T and Martín F 2012 arXiv:1211.2566
[20] Yang Z Q, Ye D F, Ding T, Pfeifer T and Fu L B 2015 Phys. Rev. A 91 013414
[21] Yang Z Q and Zhang L D 2015 Acta Phys. Sin. 64 133203 (in Chinese)
[22] Chu W C, Zhao S F and Lin C D 2011 Phys. Rev. A 84 033426
[23] Fano U 1961 Phys. Rev. 124 1866
[24] Tong X M and Chu S I 1997 Chem. Phys. 217 119
[25] Cai X, Zhao J, Wang Z and Lin Q 2013 J. Phys. B 46 175602
[26] Gaarde M B, Buth C, Tate J L and Schafer K J 2011 Phys. Rev. A 83 013419
[27] Santra R, Yakovlev V S, Pfeifer T and Loh Z H 2011 Phys. Rev. A 83 033405
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[8] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[9] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[10] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[11] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[12] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[13] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[14] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[15] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
No Suggested Reading articles found!