Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 108902    DOI: 10.1088/1674-1056/27/10/108902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Synchronization performance in time-delayed random networks induced by diversity in system parameter

Yu Qian(钱郁)1, Hongyan Gao(高红艳)1, Chenggui Yao(姚成贵)2, Xiaohua Cui(崔晓华)3, Jun Ma(马军)4,5
1 Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721007, China;
2 Department of Mathematics, Shaoxing University, Shaoxing 312000, China;
3 School of Systems Science, Beijing Normal University, Beijing 100875, China;
4 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China;
5 King Abdulaziz University, Faculty of Science, Department of Mathematics, NAAM Research Group, Jeddah 21589, Saudi Arabia
Abstract  

Synchronization rhythm and oscillating in biological systems can give clues to understanding the cooperation and competition between cells under appropriate biological and physical conditions. As a result, the network setting is appreciated to detect the stability and transition of collective behaviors in a network with different connection types. In this paper, the synchronization performance in time-delayed excitable homogeneous random networks (EHRNs) induced by diversity in system parameters is investigated by calculating the synchronization parameter and plotting the spatiotemporal evolution pattern, and distinct impacts induced by parameter-diversity are detected by setting different time delays. It is found that diversity has no distinct effect on the synchronization performance in EHRNs with small time delay being considered. When time delay is increased greatly, the synchronization performance of EHRN degenerates remarkably as diversity is increased. Surprisingly, by setting a moderate time delay, appropriate parameter-diversity can promote the synchronization performance in EHRNs, and can induce the synchronization transition from the asynchronous state to the weak synchronization. Moreover, the bistability phenomenon, which contains the states of asynchronous state and weak synchronization, is observed. Particularly, it is confirmed that the parameter-diversity promoted synchronization performance in time-delayed EHRN is manifested in the enhancement of the synchronization performance of individual oscillation and the increase of the number of synchronization transitions from the asynchronous state to the weak synchronization. Finally, we have revealed that this kind of parameter-diversity promoted synchronization performance is a robust phenomenon.

Keywords:  synchronization      time delay      excitable homogeneous random network      diversity  
Received:  23 January 2018      Revised:  16 July 2018      Accepted manuscript online: 
PACS:  89.75.Kd (Patterns)  
  05.65.+b (Self-organized systems)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11675001, 11675112, 11775020, and 11372122).

Corresponding Authors:  Yu Qian     E-mail:  qianyu0272@163.com

Cite this article: 

Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军) Synchronization performance in time-delayed random networks induced by diversity in system parameter 2018 Chin. Phys. B 27 108902

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] West B J, Geneston E L and Grigolini P 2008 Phys. Rep. 468 1
[3] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[4] Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 76 1816
[5] Zheng Z G and Hu G 2000 Phys. Rev. E 62 7882
[6] Liu Z H, Lai Y C and Hoppensteadt F C 2001 Phys. Rev. E 63 R055201
[7] Zheng Z G and Wang F Z 2002 Commun. Theor. Phys. 38 415
[8] Tang S and Liu J M 2003 Phys. Rev. Lett. 90 194101
[9] Zheng Y H and Lu Q S 2008 Physica A 387 3719
[10] Ma J, Zhang A H, Xia Y F and Zhang L P 2010 Appl. Math. Comput. 215 3318
[11] Kwon O M, Park J H and Lee S M 2011 Nonlinear Dyn. 63 239
[12] Zhang L, An X and Zhang J 2013 Nonlinear Dyn. 73 705
[13] Chen P, Yu S, Zhang X, He J, Lin Z, Li C and Lü J 2016 Nonlinear Dyn. 86 725
[14] Gray C M and Singer W 1989 Proc. Natl. Acad. Sci. 86 1698
[15] Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H D I, Sejnowski T J and Laurent G 2001 Neuron 30 553
[16] Mehta M R, Lee A K and Wilson M A 2002 Nature 417 741
[17] Qian Y, Huang X D, Hu G and Liao X H 2010 Phys. Rev. E 81 036101
[18] Qian Y 2014 Phys. Rev. E 90 032807
[19] Qian Y, Cui X H and Zheng Z G 2017 Sci. Rep. 7 5746
[20] Qian Y, Liu F, Yang K L, Zhang G, Yao C G and Ma J 2017 Sci. Rep. 7 11885
[21] Watts D J and Strogatz S H 1998 Nature 393 440
[22] Barabási A L and Albert R 1999 Science 286 509
[23] Nishikawa T, Motter A E, Lai Y C and Hoppensteadt F C 2003 Phys. Rev. Lett. 91 014101
[24] Motter A E, Zhou C S and Kurths J 2005 Phys. Rev. E 71 016116
[25] Rabinovich M I, Varona P, Selverston A I and Abarbanel H D I 2006 Rev. Mod. Phys. 78 1213
[26] Lai Y C, Frei M G, Osorio I and Huang L 2007 Phys. Rev. Lett. 98 108102
[27] Fu C B, Zhang H, Zhan M and Wang X G 2012 Phys. Rev. E 85 066208
[28] Ma J and Xu J 2015 Sci. Bull. 60 1969
[29] Ma J and Tang J 2015 Sci. China-Technol. Sci. 58 2038
[30] Dhamala M, Jirsa V K and Ding M Z 2004 Phys. Rev. Lett. 92 074104
[31] Roxin A, Brunel N and Hansel D 2005 Phys. Rev. Lett. 94 238103
[32] Rossoni E, Chen Y H, Ding M Z and Feng J F 2005 Phys. Rev. E 71 061904
[33] Wang Q Y, Perc M, Duan Z S and Chen G R 2008 Phys. Lett. A 372 5681
[34] Wang Q Y, Perc M, Duan Z S and Chen G R 2009 Chaos 19 023112
[35] Wang Q Y, Duan Z S, Perc M and Chen G R 2008 Europhys. Lett. 83 50008
[36] Wang Q Y, Perc M, Duan Z S and Chen G R 2009 Phys. Rev. E 80 026206
[37] Wang Q Y, Chen G R and Perc M 2011 Plos One 6 e15851
[38] Gong Y B, Wang L and Xu B 2012 Chaos, Solitons, and Fractals 45 548
[39] Yu H T, Wang J, Liu C, Deng B and Wei X L 2013 Physica A 392 5473
[40] Yu H T, Wang J, Liu Q X, Sun J B and Yu H F 2013 Chaos, Solitons, and Fractals 48 68
[41] Qian Y 2014 Plos One 9 e96415
[42] Wu Y A, Gong Y B and Wang Q 2015 Chaos 25 043113
[43] Wang B Y, Gong Y B, Xie H J and Wang Q 2016 Chaos, Solitons, and Fractals 91 372
[44] Ma J, Qin H X, Song X L and Chu R T 2015 Int. J. Mod. Phys. B 29 1450239
[45] Ma J, Song X L, Tang J and Wang C N 2015 Neurocomputing 167 378
[46] Glatt E, Gassel M and Kaiser F 2007 Phys. Rev. E 75 026206
[47] Gassel M, Glatt E and Kaiser F 2007 Phys. Rev. E 76 016203
[48] Luccioli S and Politi A 2010 Phys. Rev. Lett. 105 158104
[49] Tang J, Ma J, Yi M, Xia H and Yang X Q 2011 Phys. Rev. E 83 046207
[50] Qian Y, Zhao Y R, Liu F, Huang X D, Zhang Z Y and Mi Y Y 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3509
[51] B?r M and Eiswirth M 1993 Phys. Rev. E 48 R1635
[52] Gonze D, Bernard S, Waltermann C, Kramer A and Herzel H 2005 Biophys. J. 89 120
[53] To T, Henson M A, Herzog E D and Doyle F J 2007 Biophys. J. 92 3792
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[6] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[11] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[12] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[13] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[14] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[15] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
No Suggested Reading articles found!