Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020703    DOI: 10.1088/1674-1056/ab6716
GENERAL Prev   Next  

Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks

Yu-Jiao Huang(黄玉娇)1,2, Xiao-Yan Yuan(袁孝焰)2, Xu-Hua Yang(杨旭华)2, Hai-Xia Long(龙海霞)2, Jie Xiao(肖杰)2
1 Zhijiang College, Zhejiang University of Technology, Hangzhou 310024, China;
2 College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks (FOCGNNs) with time delays. Based on Brouwer's fixed point theorem, sufficient conditions are established to ensure the existence of Πi=1n(2Ki+1) equilibrium points for FOCGNNs. Through the use of Hardy inequality, fractional Halanay inequality, and Lyapunov theory, some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1n(Ki+1) equilibrium points for FOCGNNs. The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases. The activation functions are nonlinear and nonmonotonic. There could be many corner points in this general class of activation functions. The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points. Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories. Finally, two numerical examples are provided to illustrate the effectiveness of the obtained results.
Keywords:  fractional-order Cohen-Grossberg neural networks      multiple Lagrange stability      multiple Lyapunov asymptotical stability      time delays  
Received:  24 June 2019      Revised:  06 November 2019      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.30.Ks (Delay and functional equations)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. LY18F030023, LY17F030016, LQ18F030015, and LY18F020028) and the National Natural Science Foundation of China (Grant Nos. 61503338, 61773348, and 61972354).
Corresponding Authors:  Xu-Hua Yang     E-mail:  xhyang@zjut.edu.cn

Cite this article: 

Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰) Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks 2020 Chin. Phys. B 29 020703

[1] Zhang H, Liu Z, Huang G and Wang Z 2010 IEEE Trans. Neural Netw. 21 91
[2] Kaslik E and Sivasundaram S 2011 Neural Netw. 24 370
[3] Qiu F, Zhang Q and Deng X 2012 Chin. Phys. B 21 040701
[4] Zhang H, Wang Z and Liu D 2014 IEEE Trans. Neural Netw. Learn. Syst. 25 1229
[5] Yang X, Zhu Q, Huang Y, Xiao J, Wang L and Tong F 2017 Pattern Recogn. Lett. 100 167
[6] Wang W, Zeng H and Teo K 2017 Chin. Phys. B 26 110503
[7] Yang X, Cheng Z, Chen G, Wang L, Ruan Z and Zheng Y 2018 Transportation Res. A 107 246
[8] Zheng Y, Zhou X, Sheng W, Xue Y and Chen S 2018 Neural Netw. 102 78
[9] Cohen M and Grossberg S 1983 IEEE Trans. Syst. Man Cybern. 13 815
[10] Zhang H and Wang Y 2008 IEEE Trans. Neural Netw. 19 366
[11] Zhang H, Wang Z and Liu D 2008 IEEE Trans. Neural Netw. 19 1942
[12] Ali M 2014 Chin. Phys. B 23 060702
[13] Hopfield J 1982 Proc. Natl. Acad. Sci. 79 2554
[14] Chua L and Yang L 1988 IEEE Trans. Circuits Syst. 35 1257
[15] Kosko B 1988 IEEE Trans. Syst. Man Cybern. 18 49
[16] Forti M and Tesi A 1995 IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42 354
[17] Cao J and Liang J 2004 J. Math. Anal. Appl. 296 665
[18] Zhang H, Wang Z and Liu D 2008 IEEE Trans. Neural Netw. 19 855
[19] Park J and Kwon O 2008 Appl. Math. Comput. 199 435
[20] Bao G and Zeng Z 2016 Neurocomputing 193 242
[21] Cao J, Feng G and Wang Y 2008 Physica D 237 1734
[22] Hu J and Wang J 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 853
[23] Huang Y, Zhang H and Wang Z 2012 Neurocomputing 91 21
[24] Wang L and Chen T 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1816
[25] Zeng Z and Zheng W 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 1749
[26] Huang Y, Zhang H and Wang Z 2014 Appl. Math. Comput. 229 187
[27] Wang L and Chen T 2014 Neural Netw. 53 109
[28] Nie X and Zheng W 2016 IEEE Trans. Cybern. 46 679
[29] Liang J, Gong W and Huang T 2016 Neural Netw. 84 125
[30] Liu P, Zeng Z and Wang J 2017 IEEE Trans. Syst., Man, Cybern. Syst. 47 2279
[31] Huang Y, Chen S, Yang X and Xiao J 2019 Chin. Phys. B 28 040701
[32] Zhang F and Zeng Z 2018 IEEE Trans. Syst., Man, Cybern. Syst.
[33] Zhang F and Zeng Z 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 566
[34] Orman Z 2018 Neural Netw. 108 445
[35] Koeller R 1984 J. Appl. Mech. 51 299
[36] Heaviside O 1971 Electromagnetic Theory (Chelsea, New York, USA)
[37] Ichise M, Nagayanagi Y and Kojima Y 1971 J. Electroanal. Chem. Inter. Electrochem. 33 253
[38] Jiang X and Xu M 2010 Physica A 389 3368
[39] Yu J, Hu C and Jiang H 2012 Neural Netw. 35 82
[40] Boroomand A and Menhaj M 2009 Advances in Neuro-Information Processing (LNCS 5506) (Berlin, Germany: Springer) p. 883
[41] Wan L and Wu A 2018 Neurocomputing 286 1
[42] Chen B and Chen J 2015 Neural Netw. 68 78
[43] Chen L, Cao J and Wu R 2017 Neural Netw. 94 76
[44] Wu A and Zeng Z 2016 Neural Netw. 74 73
[45] Zhang L, Song Q and Zhao Z 2017 Appl. Math. Comput. 298 296
[46] Velmurugan G, Rakkiyappan R, Vembarasan V, Cao J and Alsaedi A 2017 Neural Netw. 86 42
[47] Liu H, Li S and Wang H 2017 Chin. Phys. B 26 030504
[48] Zeng Z and Zheng W 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 293
[49] Bao G and Zeng Z 2013 Neural Comput. Appl. 23 1963
[50] Gong W, Liang J and Zhang C 2006 Neural Comput. Appl. 28 1
[51] Huang G and Cao J 2008 Commun. Nonlinear Sci. Numer. Simul. 13 2279
[52] Guo Z, Liu L and Wang J 2018 IEEE Trans. Syst., Man, Cybern. Syst.
[53] Kilbas A, Srivastava H and Trujillo J 2006 Theory and Applications of Fractional Differential Equations (Boston, MA, USA: Elsevier)
[54] Liao X, Luo Q, Zeng Z and Guo Y 2008 Nonlinear Anal. Real World Appl. 9 1535
[55] Hardy G, Littlewood J and Polya G 1952 Inequalities, 2nd edn. (London: Cambridge University Press)
[56] Wang D and Xiao A 2015 Nonlinear Dyn. 80 287
[57] Ding Z and Shen Y 2016 Neurocomputing 196 159
[58] Wang H, Yu Y, Wen G, Zhang S and Yu J 2015 Neurocomputing 154 15
[1] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[2] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[3] Effects of time delays in a mathematical bone model
Li-Fang Wang(王莉芳), Kang Qiu(仇康), Ya Jia(贾亚). Chin. Phys. B, 2017, 26(3): 030503.
[4] Bifurcation behavior and coexisting motions in a time-delayed power system
Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红). Chin. Phys. B, 2015, 24(3): 030501.
[5] Consensus problems of first-order dynamic multi-agent systems with multiple time delays
Ji Liang-Hao (纪良浩), Liao Xiao-Feng (廖晓峰). Chin. Phys. B, 2013, 22(4): 040203.
[6] Synchronization of noise-perturbed optical systems with multiple time delays
Tang Mao-Ning(唐矛宁) . Chin. Phys. B, 2012, 21(2): 020509.
[7] Linear-control-based synchronisation of coexisting attractor networks with time delays
Song Yun-Zhong(宋运忠). Chin. Phys. B, 2010, 19(6): 060513.
No Suggested Reading articles found!