|
|
Validity of extracting photoionization time delay from the first moment of streaking spectrogram |
Chang-Li Wei(魏长立)1, Xi Zhao(赵曦)2 |
1 School of Physics and Electronics, Qiannan Normal College for Nationalities, Duyun 558000, China;
2 Department of Physics, Kansas State University, Manhattan, KS 66506, USA |
|
|
Abstract Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the methods of extracting the time delay from the streaking spectrogram, the simplest one is to calculate the first moment of the spectrogram and to measure its offset relative to the vector potential of the infrared field. The first moment method has been used in many theoretical simulations and analysis of experimental data, but the meaning of this offset needs to be investigated. We simulate the spectrograms and compare the extracted time delay from the first moment with the input Wigner delay. In this study, we show that the first moment method is valid only when the group delay dispersions corresponding to both the spectral phase of the attosecond pulse and the phase of the single-photon transition dipole matrix element of the target are small. Under such circumstance, the electron wave packet behaves like a classical particle and the extracted time delay can be related to a group delay in the photoionization process. To avoid ambiguity and confusion, we also suggest that the photoionization time delay be replaced by photoionization group delay and the Wigner time delay be replaced by Wigner group delay.
|
Received: 12 September 2018
Revised: 26 October 2018
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the Talent Introduction Foundation of Qiannan Normal University of Nationalities, China (Grant No. qnsyrc201619), Natural Science Foundation of Guizhou Provincial Education Department for Young Talents, China (Grant No. Qian Education Contract KY[2017]339), and Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Grant No. DE-FG02-86ER13491). |
Corresponding Authors:
Xi Zhao
E-mail: zhaoxi719@ksu.edu
|
Cite this article:
Chang-Li Wei(魏长立), Xi Zhao(赵曦) Validity of extracting photoionization time delay from the first moment of streaking spectrogram 2019 Chin. Phys. B 28 013201
|
[1] |
Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
|
[2] |
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
|
[3] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[4] |
Zhao K, Zhang Q, Chini M, Wu Y, Wang X and Chang Z H 2012 Opt. Lett. 37 3891
|
[5] |
Guo X L, Zhao S F, Wang G L and Zhou X X 2018 Chin. Phys. B 27 43201
|
[6] |
Xu Q Y, Tian Y R, Lu H Z, Zhang J, Xu T T, Zhang H D, Liu X S and Guo J 2018 Chin. Phys. B 27 33202
|
[7] |
Pan X F, Zhang J, Ben S, Xu T T and Liu X S 2018 Chin. Phys. B 27 24206
|
[8] |
Zhao X, Chen J, Fu P, Liu X, Yan Z C and Wang B 2013 Phys. Rev. A 87 043411
|
[9] |
Guo J, Ge X L, Zhong H Y, Zhao X, Zhang M, Jiang Y and Liu X S 2014 Phys. Rev. A. 90 053410
|
[10] |
Klünder K J, Dahlström M, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R and L’Huillier A 2011 Phys. Rev. Lett. 106 143002
|
[11] |
Xia C L, Ge X L, Zhao X, Guo J and Liu X S 2012 Phys. Rev. A 85 053424
|
[12] |
Zhao X, Yang Y J, Liu X S and Wang B 2014 Chin. Phys. Lett. 31 043202
|
[13] |
Palatchi C, Dahlström J M, Kheifets A S, Ivanov I A, Canaday D M, Agostini P and DiMauro L F 2014 J. Phys. B: At. Mol. Opt. Phys. 47 245003
|
[14] |
Zhai Z, Peng D, Zhao X, Guo F, Yang Y, Fu P, Chen J, Yan Z C and Wang B 2012 Phys. Rev. A 86 043432
|
[15] |
Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martin F and Saliéres P 2016 Science 354 734
|
[16] |
Schultze M, Fieß M, Karpowicz N, et al. 2010 Science 328 1658
|
[17] |
Sabbar M, Heuser S, Boge R, Lucchini M, Carette T, Lindroth E, Gallmann L, Cirelli C and Keller U 2015 Phys. Rev. Lett. 115 133001
|
[18] |
Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer J, Kienberger R and Schultze M 2017 Nat. Phys. 13 280
|
[19] |
Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2007 Nature 446 627
|
[20] |
Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D and Charalambidis D 2011 Nat. Phys. 7 781
|
[21] |
Maånsson E P, Guénot D, Arnold C L, Kroon D, Kasper S, Dahlström J M, Lindroth E, Kheifets A S, L’Huillier A, Sorensen S L and Gisselbrecht M 2014 Nat. Phys. 10 207
|
[22] |
Caillat J, Maquet A, Haessler S, Fabre B, Ruchon T, Salières P, Mairesse Y and Taïeb R 2011 Phys. Rev. Lett. 106 093002
|
[23] |
Kelkensberg F, Siu W, Pérez-Torres J F, Morales F, Gademann G, Rouzée A, Johnsson P, Lucchini M, Calegari F, Sanz-Vicario J L, Martin F and Vrakking M J J 2011 Phys. Rev. Lett. 107 043002
|
[24] |
Sansone G, Kelkensberg F, Pérez-Torres J F, et al. 2010 Nature 465 763
|
[25] |
Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martin F and Nisoli M 2014 Science 346 336
|
[26] |
Trabattoni A, Klinker M, González-Vázquez J, Liu C, Sansone G, Linguerri R, Hochlaf M, Klei J, Vrakking M J J, Martin F, Nisoli M and Calegari F 2015 Phys. Rev. X 5 041053
|
[27] |
Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F and Heinzmann U 2007 Nature 449 1029
|
[28] |
Neppl S, Ernstorfer R, Bothschafter E M, Cavalieri A L, Menzel D, Barth J V, Krausz F, Kienberger R and Feulner P 2012 Phys. Rev. Lett. 109 087401
|
[29] |
Neppl S, Ernstorfer R, Cavalieri A L, Lemell C, Wachter G, Magerl E, Bothschafter E M, Jobst M, Hofstetter M, Kleineberg U, Barth J V, Menzel D, Burgdörfer J, Feulner P, Krausz F and Kienberger R 2015 Nature 517 342
|
[30] |
Lemell C, Neppl S, Wachter G, Tőkési K, Ernstorfer R, Feulner P, Kienberger R and Burgdörfer J 2015 Phys. Rev. B 91 241101
|
[31] |
Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M and Keller U 2015 Optica 2 405
|
[32] |
Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H and Murnane M 2016 Science 353 62
|
[33] |
Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F and Corkum P B 2002 Phys. Rev. Lett. 88 173903
|
[34] |
Muller H G 2002 Appl. Phys. B 74 S17
|
[35] |
Mairesse Y and Quéré F 2005 Phys. Rev. A 71 011401
|
[36] |
Maquet A, Caillat J and Taïeb R 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204004
|
[37] |
Pazourek R, Nagele S and Burgdörfer J 2015 Rev. Mod. Phys. 87 765
|
[38] |
Kheifets A S and Ivanov I A 2010 Phys. Rev. Lett. 105 233002
|
[39] |
Moore L R, Lysaght M A, Parker J S, van der Hart H W and Taylor K T 2011 Phys. Rev. A 84 061404
|
[40] |
Dahlström J M, Carette T and Lindroth E 2012 Phys. Rev. A 86 061402(R)
|
[41] |
Nagele S, Pazourek R, Feist J and Burgdörfer J 2012 Phys. Rev. A 85 033401
|
[42] |
Pazourek R, Feist J, Nagele S and Burgdörfer J 2012 Phys. Rev. Lett. 108 163001
|
[43] |
Feist J, Zatsarinny O, Nagele S, Pazourek R, Burgdörfer J, Guan X, Bartschat K and Schneider B I 2014 Phys. Rev. A 89 033417
|
[44] |
Kazansky A K and Echenique P M 2009 Phys. Rev. Lett. 102 177401
|
[45] |
Borisov A G, Sánchez-Portal D, Kazansky A K and Echenique P M 2013 Phys. Rev. B 87 121110(R)
|
[46] |
Zhang C H and Thumm U 2011 Phys. Rev. A 84 033401
|
[47] |
Liao Q and Thumm U 2014 Phys. Rev. Lett. 112 023602
|
[48] |
Calegari F, Sansone G, Stagira S, Vozzi C and Nisoli M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062001
|
[49] |
Wigner E P 1955 Phys. Rev. 98 145
|
[50] |
Smith F T 1960 Phys. Rev. 118 349
|
[51] |
Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407
|
[52] |
Kitzler M, Milosevic N, Scrinzi A, Krausz F and Brabec T 2002 Phys. Rev. Lett. 88 173904
|
[53] |
Yakovlev V S, Gagnon J, Karpowicz N and Krausz F 2010 Phys. Rev. Lett. 105 073001
|
[54] |
Zhao X, Wei H, Wei C and Lin C D 2017 J. Opt. 19 114009
|
[55] |
Tong X M and Lin C D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2593
|
[56] |
Morishita T, Chen Z, Watanabe S and Lin C D 2007 Phys. Rev. A 75 023407
|
[57] |
Cooper J W 1962 Phys. Rev. 128 681
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|