|
|
Plasma-screening effects on positronium formation |
Jia Ma(马佳)1, Yuan-Cheng Wang(王远成)2, Ya-Jun Zhou(周雅君)3, Heng Wang(王珩)1 |
1 College of Science, Shenyang Aerospace University, Shenyang 110136, China;
2 College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China;
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Plasma-screening effects on positronium (Ps) formation for positron-hydrogen collisions in a Debye plasma environment is further investigated using the screening approximation model with the inclusion of the modified structure of Ps. More accurate Ps formation cross sections (n=1, 2) are obtained for various Debye lengths from the Ps formation thresholds to 50 eV. The influence of considering modified bound-state wave functions and eigenenergies for the Ps is found to result in the reduction of the Ps formation cross sections at low energies, whereas it cannot counteract the enhancement of the Ps formation by the Debye screening.
|
Received: 17 August 2017
Revised: 23 September 2017
Accepted manuscript online:
|
PACS:
|
34.80.Uv
|
(Positron scattering)
|
|
52.20.Hv
|
(Atomic, molecular, ion, and heavy-particle collisions)
|
|
34.80.Lx
|
(Recombination, attachment, and positronium formation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404223, 11447158, and 11604223) and the Doctoral Program Foundation of Shenyang Aerospace University, China (Grant No. 13YB26). |
Corresponding Authors:
Jia Ma, Yuan-Cheng Wang
E-mail: majia@sau.edu.cn;rickywangyc@aliyun.com
|
Cite this article:
Jia Ma(马佳), Yuan-Cheng Wang(王远成), Ya-Jun Zhou(周雅君), Heng Wang(王珩) Plasma-screening effects on positronium formation 2018 Chin. Phys. B 27 013401
|
[1] |
Salzman D 1998 Atomic Physics in Hot Plasmas (Oxford: Oxford University Press)
|
[2] |
Murillo M S and Weisheit J C 1998 Phys. Rep. 302 1
|
[3] |
Janev R K, Zhang S B and Wang J G 2016 Matter and Radiation at Extremes 1 237
|
[4] |
Weidenspointner G, Skinner G, Jean P, Knodlseder J, von Ballmoons P, Bignami G, Diehl R, Strong A W, Cordier B, Schanne S and Winkler C 2008 Nature 451 159
|
[5] |
Frey A R and Reid N B 2013 Phys. Rev. D 87 103508
|
[6] |
Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
|
[7] |
Chupp E L, Forrest D J, Higbie P R, Suri A N, Tsai C and Dunphy P P 1973 Nature 241 333
|
[8] |
Amoretti G M, Amsler C, Bonomi G M, Bouchta A, Bowe P D, Carraro C, Cesar C L, Charlton M, Doser M, Filippini V, Fontana A, Fujiwara M C, Funakoshi R, Genova P, Hangst J S, Hayano R S, Jurgensen L V, Lagomarsino V, Landua R, Lindelof D, Lodi Rizzini E, Macri M, Madsen N, Manuzio G, Montagna P, Pruys H, Regenfus C, Rotondi A, Testera G, Variola A, and van der Werf D P 2003 Phys. Rev. Lett. 91 055001
|
[9] |
Sen S, Mandal P and Mukherjee 2011 Euro. Phys. J. D 62 379
|
[10] |
Sen S, Mandal P and Mukherjee 2012 Euro. Phys. J. D 66 230
|
[11] |
Ghoshal A, Kamali M Z M and Ratnavelu 2013 Phys. Plasmas 20 013506
|
[12] |
Rej P and Ghoshal A 2014 Phys. Plasmas 21 093507
|
[13] |
Nayek S and Ghoshal A 2012 Phys. Plasmas 19 113501
|
[14] |
Nayek S and Ghoshal A 2012 Phys. Scr. 85 035301
|
[15] |
Nayek S and Ghoshal A 2011 Euro. Phys. J. D 64 257
|
[16] |
Zhang S B, Qi Y Y, Qu Y Z, Chen X J and Wang J G 2010 Chin. Phys. Lett. 27 013401
|
[17] |
Ghoshal A, Nayek S, Kamali M Z M and Ratnavelu K 2014 AIP Conf. Proc. 1588 94
|
[18] |
Ma J, Cheng Y, Wang Y C and Zhou Y 2012 Phys. Plasmas 19 063303
|
[19] |
Rej P and Ghoshal A 2016 J. Phys. B-At. Mol. Opt. Phys. 49 125203
|
[20] |
Pandey M K, Lin Y C and Ho Y K 2016 J. Phys. B-At. Mol. Opt. Phys. 49 034007
|
[21] |
Ma J, Cheng Y, Wang Y C and Zhou Y 2011 J. Phys. B-At. Mol. Opt. Phys. 44 175203
|
[22] |
Utamuratov R, Kadyrov A S, Fursa D V, Bray I and Stelbovics A T 2010 Phys. Rev. A 82 042705
|
[23] |
Liu F, Cheng Y J and Zhou Y J 2012 Chin. Phys. B 21 053403
|
[24] |
Yu R M, Cheng Y J, Wang Y and Zhou Y J 2012 Chin. Phys. B 21 053402
|
[25] |
Ma J, Zhou Y J and Wang Y C 2012 Chin. Phys. B 21 123403
|
[26] |
Cheng Y J, Zhou Y J and Jiao L G 2012 Chin. Phys. B 21 013405
|
[27] |
Cheng Y J and Zhou Y J 2010 Chin. Phys. B 19 063405
|
[28] |
Lin L, Wang H N and Jiao L G 2017 Chin. Phys. B 26 033401
|
[29] |
Wu X G, Cheng Y J, Liu F and Zhou Y J 2017 Chin. Phys. B 26 023401
|
[30] |
Yu R M, Pu C Y, Huang X Y, Ying F R, Liu X Y, Jiao L G and Zhou Y J 2016 Chin. Phys. B 25 073401
|
[31] |
Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
|
[32] |
Salvat F, Fernandez-Varea J M and Williamson W 1995 Comput. Phys. Commun. 90 151
|
[33] |
Kar S and Ho Y K 2006 Chem. Phys. Lett. 424 403
|
[34] |
Kar S and Ho Y K 2006 Phys. Rev. A 73 032502
|
[35] |
Kar S and Ho Y K 2009 Few-Body Syst. 46 173
|
[36] |
McCarthy I E and Zhou Y 1994 Phys. Rev. A 49 4597
|
[37] |
McCarthy I E and Stelbovics A T 1980 Phys. Rev. A 22 502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|