Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 013401    DOI: 10.1088/1674-1056/27/1/013401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Plasma-screening effects on positronium formation

Jia Ma(马佳)1, Yuan-Cheng Wang(王远成)2, Ya-Jun Zhou(周雅君)3, Heng Wang(王珩)1
1 College of Science, Shenyang Aerospace University, Shenyang 110136, China;
2 College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China;
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  

Plasma-screening effects on positronium (Ps) formation for positron-hydrogen collisions in a Debye plasma environment is further investigated using the screening approximation model with the inclusion of the modified structure of Ps. More accurate Ps formation cross sections (n=1, 2) are obtained for various Debye lengths from the Ps formation thresholds to 50 eV. The influence of considering modified bound-state wave functions and eigenenergies for the Ps is found to result in the reduction of the Ps formation cross sections at low energies, whereas it cannot counteract the enhancement of the Ps formation by the Debye screening.

Keywords:  plasma-screening effect      positron      scattering      positronium formation  
Received:  17 August 2017      Revised:  23 September 2017      Accepted manuscript online: 
PACS:  34.80.Uv (Positron scattering)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  34.80.Lx (Recombination, attachment, and positronium formation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11404223, 11447158, and 11604223) and the Doctoral Program Foundation of Shenyang Aerospace University, China (Grant No. 13YB26).

Corresponding Authors:  Jia Ma, Yuan-Cheng Wang     E-mail:  majia@sau.edu.cn;rickywangyc@aliyun.com

Cite this article: 

Jia Ma(马佳), Yuan-Cheng Wang(王远成), Ya-Jun Zhou(周雅君), Heng Wang(王珩) Plasma-screening effects on positronium formation 2018 Chin. Phys. B 27 013401

[1] Salzman D 1998 Atomic Physics in Hot Plasmas (Oxford: Oxford University Press)
[2] Murillo M S and Weisheit J C 1998 Phys. Rep. 302 1
[3] Janev R K, Zhang S B and Wang J G 2016 Matter and Radiation at Extremes 1 237
[4] Weidenspointner G, Skinner G, Jean P, Knodlseder J, von Ballmoons P, Bignami G, Diehl R, Strong A W, Cordier B, Schanne S and Winkler C 2008 Nature 451 159
[5] Frey A R and Reid N B 2013 Phys. Rev. D 87 103508
[6] Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
[7] Chupp E L, Forrest D J, Higbie P R, Suri A N, Tsai C and Dunphy P P 1973 Nature 241 333
[8] Amoretti G M, Amsler C, Bonomi G M, Bouchta A, Bowe P D, Carraro C, Cesar C L, Charlton M, Doser M, Filippini V, Fontana A, Fujiwara M C, Funakoshi R, Genova P, Hangst J S, Hayano R S, Jurgensen L V, Lagomarsino V, Landua R, Lindelof D, Lodi Rizzini E, Macri M, Madsen N, Manuzio G, Montagna P, Pruys H, Regenfus C, Rotondi A, Testera G, Variola A, and van der Werf D P 2003 Phys. Rev. Lett. 91 055001
[9] Sen S, Mandal P and Mukherjee 2011 Euro. Phys. J. D 62 379
[10] Sen S, Mandal P and Mukherjee 2012 Euro. Phys. J. D 66 230
[11] Ghoshal A, Kamali M Z M and Ratnavelu 2013 Phys. Plasmas 20 013506
[12] Rej P and Ghoshal A 2014 Phys. Plasmas 21 093507
[13] Nayek S and Ghoshal A 2012 Phys. Plasmas 19 113501
[14] Nayek S and Ghoshal A 2012 Phys. Scr. 85 035301
[15] Nayek S and Ghoshal A 2011 Euro. Phys. J. D 64 257
[16] Zhang S B, Qi Y Y, Qu Y Z, Chen X J and Wang J G 2010 Chin. Phys. Lett. 27 013401
[17] Ghoshal A, Nayek S, Kamali M Z M and Ratnavelu K 2014 AIP Conf. Proc. 1588 94
[18] Ma J, Cheng Y, Wang Y C and Zhou Y 2012 Phys. Plasmas 19 063303
[19] Rej P and Ghoshal A 2016 J. Phys. B-At. Mol. Opt. Phys. 49 125203
[20] Pandey M K, Lin Y C and Ho Y K 2016 J. Phys. B-At. Mol. Opt. Phys. 49 034007
[21] Ma J, Cheng Y, Wang Y C and Zhou Y 2011 J. Phys. B-At. Mol. Opt. Phys. 44 175203
[22] Utamuratov R, Kadyrov A S, Fursa D V, Bray I and Stelbovics A T 2010 Phys. Rev. A 82 042705
[23] Liu F, Cheng Y J and Zhou Y J 2012 Chin. Phys. B 21 053403
[24] Yu R M, Cheng Y J, Wang Y and Zhou Y J 2012 Chin. Phys. B 21 053402
[25] Ma J, Zhou Y J and Wang Y C 2012 Chin. Phys. B 21 123403
[26] Cheng Y J, Zhou Y J and Jiao L G 2012 Chin. Phys. B 21 013405
[27] Cheng Y J and Zhou Y J 2010 Chin. Phys. B 19 063405
[28] Lin L, Wang H N and Jiao L G 2017 Chin. Phys. B 26 033401
[29] Wu X G, Cheng Y J, Liu F and Zhou Y J 2017 Chin. Phys. B 26 023401
[30] Yu R M, Pu C Y, Huang X Y, Ying F R, Liu X Y, Jiao L G and Zhou Y J 2016 Chin. Phys. B 25 073401
[31] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[32] Salvat F, Fernandez-Varea J M and Williamson W 1995 Comput. Phys. Commun. 90 151
[33] Kar S and Ho Y K 2006 Chem. Phys. Lett. 424 403
[34] Kar S and Ho Y K 2006 Phys. Rev. A 73 032502
[35] Kar S and Ho Y K 2009 Few-Body Syst. 46 173
[36] McCarthy I E and Zhou Y 1994 Phys. Rev. A 49 4597
[37] McCarthy I E and Stelbovics A T 1980 Phys. Rev. A 22 502
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[5] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[8] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[9] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[14] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[15] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
No Suggested Reading articles found!