|
|
Photoelectron longitudinal momentum distributions containing nondipole effects |
Yi-Ning Huo(霍一宁)1, Jian Li(李健)2,3, Feng-Cai Ma(马凤才)1,3 |
1 School of Physics, Liaoning University, Shengyang 110036, China; 2 Department of Physics, Shenyang Aerospace University, Shengyang 110003, China; 3 School of Physics Science and Technology, Inner Mongolia University, Hohhot 010021, China |
|
|
Abstract This paper proposes a modified strong field approximation model for evaluating nondipole effects on the ionization of an atom in an intense laser field. The photoelectron longitudinal momentum distributions (PLMD) of a hydrogen-like atom exposed to a mid-infrared laser field is calculated. The theoretical results indicate an obvious asymmetry in the PLMD, and an offset of the PLMD peak appears in the opposite direction of the beam propagation due to nondipole effects. The peak offsets of the PLMD increased with the laser intensity, imposed by the initial state of the hydrogen-like atom.
|
Received: 11 August 2017
Revised: 30 September 2017
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274149) and the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology, China (Grant No. F12-254-1-00). |
Corresponding Authors:
Yi-Ning Huo, Feng-Cai Ma
E-mail: huoyining_jiangnan@126.com;fcma@lnu.edu.cn
|
Cite this article:
Yi-Ning Huo(霍一宁), Jian Li(李健), Feng-Cai Ma(马凤才) Photoelectron longitudinal momentum distributions containing nondipole effects 2018 Chin. Phys. B 27 013203
|
[1] |
Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B 39 R203
|
[2] |
Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M, Liu X, Hao X L, Li W D, He X T and Chen J 2012 Phys. Rev. Lett. 109 043001
|
[3] |
I'Huillier A, Lompre L A, Mainfray G and Manus C 1983 Phys. Rev. A 27 2503
|
[4] |
Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V and Afanech F 2000 Phys. Rev. Lett 84 443
|
[5] |
Chen J and Nam C H 2002 Phys. Rev. A 66 053415
|
[6] |
van de Sand Gerd and Rost Jan M 1999 Phys. Rev. Lett 83 524
|
[7] |
Catoire F, Ferre A, Hort O, Dubrouoil A Quintard L, Descamps D, Petit S, Burgy F, Mevel E, Mairesse Y and Constant E 2016 Phys. Rev. A 94 063401
|
[8] |
Keldysh L V 1965 Sov. Phys. JETP 20 1307
|
[9] |
Reiss H R 1980 Phys. Rev. A 22 1786
|
[10] |
Faisal F H M 1973 J. Phys. B 6 L89
|
[11] |
Reiss H R 2008 Phys. Rev. Lett 101 043002
|
[12] |
Reiss H R 2013 Phys. Rev. A 87 033421
|
[13] |
Reiss H R 2014 J. Phys. B 47 204006
|
[14] |
Wu M Y, Wang Y L, Liu X J, Li W D, Hao X L and Chen J 2013 Chin. Phys. Lett. 30 073202
|
[15] |
Hao X L, Li W D, Liu J and Chen J 2012 Chin. Phys. B 21 083304
|
[16] |
Moshammer R Ullrich J, Feuerstein B Fischer D, Dorn A, Schroter C D, Crespo Lopez-Urrutia J R and Hoehr C 2003 Phys. Rev. Lett. 91 113002
|
[17] |
Chen Z J, Morishita T Le Anh-Thu, Wickenhauser M Tong X M and Lin C D 2006 Phys. Rev. A 74 053405
|
[18] |
Ivanov I A 2014 Phys. Rev. A 90 013418
|
[19] |
Arissian L, Smeenk C, Turner F Trallero C, Sokolov A V, Villeneuve D M, Staudte A and Corkum P B 2010 Phys. Rev. Lett. 105 133002
|
[20] |
Smeenk C T L, Arissian L, Zhou B, Mysyrowicz A, Villeneuve D M, Staudte A and Corkum P B 2011 Phys. Rev. Lett. 106 193002
|
[21] |
Titi A S and Drake G W 2012 Phys. Rev. A 85 041404
|
[22] |
Ludwig A, Maurer J, Mayer B W, Phillips C R, Gallmann L and Keller U 2014 Phys. Rev. Lett. 113 243001
|
[23] |
Yakaboylu E Klaiber M, Bauke H, Hatsagortsyan K Z and Keitel C H 2013 Phys. Rev. A 88 063421
|
[24] |
Bauer J H 2013 J. Phys. B 46 045601
|
[25] |
Tao J F Xia Q Z, Cai J Fu L B and Liu J 2017 Phys. Rev. A 95 011402
|
[26] |
Chelkowski S, André D B and Corkum P B 2017 Phys. Rev. A 95 053402
|
[27] |
Reiss H R 2000 Phys. Rev. A 63 013409
|
[28] |
Tang Z H, Li Y Q and Ma F C 2013 Chin. Phys. B 22 084203
|
[29] |
Gordon W 1926 Z. Phys. 40 117
|
[30] |
Barth I and Smirnova O 2011 Phys. Rev. A 84 063415
|
[31] |
Barth I and Smirnova O 2012 Phys. Rev. A 85 029906
|
[32] |
Barth I and Smirnova O 2012 Phys. Rev. A 85 039903
|
[33] |
Barth I and Smirnova O 2013 Phys. Rev. A 87 013433
|
[34] |
Serebryannikov E E and Zheltikov A M 2016 Phys. Rev. Lett. 116 123901
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|