Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060305    DOI: 10.1088/1674-1056/28/6/060305
GENERAL Prev   Next  

Simulation and measurement of millimeter-wave radiation from Josephson junction array

Xin Zhang(张鑫)1, Sheng-Hui Zhao(赵生辉)1, Li-Tian Wang(王荔田)1, Jian Xing(邢建)1, Sheng-Fang Zhang(张胜芳)1, Xue-Lian Liang(梁雪连)1, Ze He(何泽)1, Pei Wang(王培)2, Xin-Jie Zhao(赵新杰)1,3, Ming He(何明)1,4, Lu Ji(季鲁)1,3
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China;
2 Beijing Institute of Radio Measurement, Beijing 100854, China;
3 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China;
4 Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
Abstract  We report the circuit simulations and experiments of millimeter-wave radiation from a high temperature superconducting (HTS) bicrystal Josephson junction (BJJ) array. To study the effects of junction characteristic parameters on radiation properties, new radiation circuit models are proposed in this paper. The series resistively and capacitively shunted junction (RCSJ) models are packaged into a Josephson junction array (JJA) model in the simulation. The current-voltage characteristics (IVCs) curve and radiation peaks are simulated and analyzed by circuit models, which are also observed from the experiment at liquid nitrogen temperature. The experimental radiation linewidth and power are in good agreement with simulated results. The presented circuit models clearly demonstrate that the inconsistency of the JJA will cause a broad linewidth and a low detected power. The junction radiation properties are also investigated at the optimal situation by circuit simulation. The results further confirm that the consistent JJA characteristic parameters can successfully narrow the radiation linewidth and increase the power of junction radiation.
Keywords:  high temperature superconducting (HTS) Josephson junction array      radiation      circuit model      simulation  
Received:  16 January 2019      Revised:  01 April 2019      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  74.81.Fa (Josephson junction arrays and wire networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51002081), the Fundamental Research Funds for the Central Universities, China, the China Manned Space Advance Research Program, China (Grant No. 030201), and the Research Program of Application Foundation and Advanced Technology of Tianjin, China (Grant No. 15JCQNJC01300).
Corresponding Authors:  Lu Ji     E-mail:  luji@nankai.edu.cn

Cite this article: 

Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁) Simulation and measurement of millimeter-wave radiation from Josephson junction array 2019 Chin. Phys. B 28 060305

[1] Minami H, Watanabe C, Kashiwagi T, Yamamoto T, Kadowaki K and Klemm R A 2016 J. Phys.: Condens. Matter 28 025701
[2] Sun H, Wiel, R, Xu Z, et al. 2018 Phys. Rev. Appl. 10 024041
[3] Darula M, Doderer T and Beuven S 1999 Supercond. Sci. Technol. 12 R1
[4] Kashiwagi T, Kubo H, Sakamoto K, Yuasa T, Tanabe Y, Watanabe C, Tanaka T, Komori Y, Ota R, Kuwano G, Nakamura K, Katsuragawa T, Tsujimoto M, Yamamoto T, Yoshizaki R, Minami H, Kadowaki K and Klemm R A 2017 Supercond. Sci. Technol. 30 074008
[5] Han S, Ji S, Kang I, Kim S C and You C 2019 Opt. Commun. 430 83
[6] Adela B B, van Beurden M C, Van Zeijl P and Smolders A B 2018 IEEE Trans. Antennas Propag. 66 5214
[7] Daniel O, Patrick K, Julian A, Jannis G, Martin V, Kristina Z and Ole G 2018 Frequenz 72 151
[8] Du J, Weily A R, Gao X, Zhang T, Foley C P and Guo Y J 2017 Supercond. Sci. Technol. 30 024002
[9] Pegrum C, Zhang T, Du J and Guo Y J 2016 IEEE Trans. Appl. Supercond. 26 1
[10] Shukrinov Y M, Medvedeva S Y, Botha A E, Kolahchi M R and Irie A 2013 Phys. Rev. B 88 214515
[11] Rudau F, Wiel, R, Langer J, Zhou X J, Ji M, Kinev N, Hao L Y, Huang Y, Li J, Wu P H, Hatano T, Koshelets V P, Wang H B, Koelle D and Kleiner R 2016 Phys. Rev. Appl. 5 044017
[12] Richards P L, Auracher F and Van Duzer T 1973 Proc. IEEE 61 36
[13] Zhang T, Pegrum C, Du J and Guo Y J J 2017 Supercond. Sci. Technol. 30 015008
[14] Wang P, Wang Z, Fan B, Xie W, Liu W, Zhao X J, Zhang X, Ji L, He M, Fang L and Yan S L 2012 Physica C: Supercond. 483 97
[15] Wang Z, Zhao X J, Yue H W, Song F B, He M, You F, Yan S L, Klushin A M and Xie Q L 2010 Supercond. Sci. Technol. 23 065013
[16] Liu X, Hu L, Xie W, Wang P, Ma L J, Zhao X J, He M, Zhang X and Ji L 2015 Physica C 511 10
[17] Li M Y, Yuan J, Kinev N, Li J, Gross B, Guenon S, Ishii A, Hirata K, Hatano T, Koelle D, Kleiner R, Koshelets V P, Wang H B and Wu P H 2012 Phys. Rev. B 86 060505
[18] Jain A K, Likharev K K, Lukens J E and E S J 1984 Phys. Rep. 109 309
[19] Kunkel G, Ono R H and Klushin A M 1996 Supercond. Sci. Technol. 9 A1
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[4] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[12] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[13] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[14] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[15] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
No Suggested Reading articles found!