Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 068501    DOI: 10.1088/1674-1056/28/6/068501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Development of 0.5-V Josephson junction array devices for quantum voltage standards

Lanruo Wang(王兰若)1, Jinjin Li(李劲劲)2,3, Wenhui Cao(曹文会)2,3, Yuan Zhong(钟源)2,3, Zhonghua Zhang(张钟华)2,3
1 Department of Electrical Engineering, Tsinghua University, Beijing 100089, China;
2 National Institute of Metrology, Beijing 122000, China;
3 Key Laboratory of the Electrical Quantum Standard of AQSIQ, Beijing 122000, China
Abstract  

The design, fabrication, and the characterization of a 0.5-V Josephson junction array device are presented for the quantum voltage standards in the National Institute of Metrology (NIM) of China. The device consists of four junction arrays, each of which has 1200 3-stacked Nb/NbxSi1-x/Nb junctions and an on-chip superconducting microwave circuit which is mainly a power divider enabling each Josephson array being loaded with an equal amount of microwave power. A direct current (dc) quantum voltage of about 0.5 V with a~1 -mA current margin of the 1st quantum voltage step is obtained. To further prove the quality of NIM device, a comparison between the NIM device with the National Institute of Standards and Technology (NIST) programmable Josephson voltage standard (PJVS) system device is conducted. The difference of the reproduced 0.5-V quantum voltage between the two devices is about 0.55 nV, which indicates good agreement between the two devices. With the homemade device, we have realized a precise and applicable 0.5-V applicable-level quantum voltage.

Keywords:  Josephson voltage standards      Josephson junction      superconducting-normal metal-superconducting (SNS) junction      quantum device  
Received:  22 November 2018      Revised:  27 March 2019      Accepted manuscript online: 
PACS:  85.25.Cp (Josephson devices)  
  74.81.Fa (Josephson junction arrays and wire networks)  
  06.20.fa (Units)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF02000402).

Corresponding Authors:  Jinjin Li     E-mail:  jinjinli@nim.ac.cn

Cite this article: 

Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华) Development of 0.5-V Josephson junction array devices for quantum voltage standards 2019 Chin. Phys. B 28 068501

[1] Dresselhaus P D, Elsbury M M, Olaya D, Burroughs C J and Benz S P 2011 IEEE Trans. Appl. Supercond. 21 693
[2] Dresselhaus P D, Elsbury M, Burroughs C J, Olaya D, Benz S P, Bergren N F, Schwall R and Popovic Z 2008 Conference on Precision Electromagnetic Measurements Digest, June 8-13, 2008, Broomfield, USA, pp. 102-103
[3] Elsbury M M, Dresselhaus P D, Benz S P and Popovic Z 2009 IEEE MTT-S International Microwave Symposium Digest, June 6-12, 2009, Boston, USA, pp. 997-1000
[4] Fox A, Dresselhaus P, Rufenacht A, Sanders A and Benz S 2015 IEEE Trans. Appl. Supercond. 25 Issue 3
[5] Mueller F, Behr R, Weimann T, Palafox L, Olaya D, Dresselhaus P D and Benz S P 2009 IEEE Trans. Appl. Supercond. 19 981
[6] Behr R, Kieler O, Kohlmann J, Mueller F and Palafox L 2012 Meas. Sci. Technol. 23 124002
[7] Kohlmann J, Mueller F, Kieler O, Behr R, Palafox L, Kahmann M and Niemeyer J 2007 IEEE Trans. Instrum. Meas. 56 472
[8] Yamamori H, Yamada T, Sasaki H and Shoji A 2008 Supercond. Sci. Technol. 21 105007
[9] Yamamori H, Yamada T, Sasaki H and Shoji A 2010 IEEE Trans. Appl. Supercond. 20 71
[10] Flowers-Jacobs N E, Fox A E, Dresselhaus P D, Schwall R E and Benz S P 2016 IEEE Trans. Appl. Supercond. 26 140020
[11] Cao W, Li J, Zhong Y, Gao Y, Li H, Wang Z and He Q 2016 Chin. Phys. B 25 057401
[12] Wang L, Zhong Y, Li J, Qu J, Zhong Q, Cao W, Wang X, Zhou Z, Fu K and Shi Y 2018 Acta Phys. Sin. 67 108501 (in Chinese)
[13] Cao W, Li J, Zhong Y and He Q 2015 Chin. Phys. B 24 127402
[14] Wang L, Zhong Y, Li J, Cao W, Zhong Q, Wang X and Li X 2018 Mater. Res. Express 5 046410
[15] Elsbury M M, Dresselhaus P D, Bergren N F, Burroughs C J, Benz S P and Popovic Z 2009 IEEE Trans. Microwave Theory Tech. 57 2055
[16] Schulze H, Behr R, Muller F and Niemeyer J 1998 Appl. Phys. Lett. 73 996
[17] Hassel J, Grönberg L, Helistö P and Seppä H 2006 Appl. Phys. Lett. 89 072503
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[6] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[7] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[8] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[9] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[10] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[11] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[12] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[13] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[14] General analytical method of designing shielded coils for arbitrary axial magnetic field
Yi Zhang(张燚), Yu-Jiao Li(李玉姣), Qi-Yuan Jiang(江奇渊), Zhi-Guo Wang(汪之国), Tao Xia(夏涛), Hui Luo(罗晖). Chin. Phys. B, 2019, 28(11): 110702.
[15] 0-π transition induced by the barrier strength in spin superconductor Josephson junctions
Wen Zeng(曾文), Rui Shen(沈瑞). Chin. Phys. B, 2018, 27(9): 097401.
No Suggested Reading articles found!