Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097901    DOI: 10.1088/1674-1056/26/9/097901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation

Guo-Bao Feng(封国宝)1,2, Wan-Zhao Cui(崔万照)1, Na Zhang(张娜)1, Meng Cao(曹猛)2, Chun-Liang Liu(刘纯亮)2
1 National Key Laboratory of Science and Technology on Space Microwave, Xi'an 710000, China;
2 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Calculations of secondary electron yield (SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface contamination states of real sample result in notable difference between simulations and experiments. In this paper, in order to calculate SEY of metal under complicated surface state accurately, we propose a synthetic semi-empirical physical model. The processes of excitation of internal secondary electron (SE) and movement toward surface can be simulated using this model. This model also takes into account the influences of incident angle and backscattering electrons as well as the surface gas contamination. In order to describe internal electronic states accurately, the penetration coefficient of incident electron is described as a function of material atom number. Directions of internal electrons are set to be uniform in each angle. The distribution of internal SEs is proposed by considering both the integration convergence and the cascade scattering process. In addition, according to the experiment data, relationship among desorption gas quantities, sample ultimate temperature and SEY is established. Comparing with experiment results, this synthetic semi-empirical physical model can describe the SEY of metal better than former formulas, especially in the aspect of surface contaminated states. The proposed synthetic semi-empirical physical model and presented results in this paper can be helpful for further studying SE emission, and offer an available method for estimating and taking advantage of SE emission accurately.
Keywords:  secondary electron yield      synthetic semi-empirical physical model      metal      electron irradiation  
Received:  07 April 2017      Revised:  24 May 2017      Accepted manuscript online: 
PACS:  79.20.Ap (Theory of impact phenomena; numerical simulation)  
  72.20.Dp (General theory, scattering mechanisms)  
  02.70.Uu (Applications of Monte Carlo methods)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1537211 and 11675278) and the China Postdoctoral Science Foundation (Grant No. 2016M602944XB).
Corresponding Authors:  Wan-Zhao Cui     E-mail:  cuiwanzhao@163.com

Cite this article: 

Guo-Bao Feng(封国宝), Wan-Zhao Cui(崔万照), Na Zhang(张娜), Meng Cao(曹猛), Chun-Liang Liu(刘纯亮) A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation 2017 Chin. Phys. B 26 097901

[1] Austin L and Starke H 1902 Annalen. Der. Physik. 314 271
[2] Al-Obaidi H N and KhaleelI H 2013 Micron 51 13
[3] Feng G B, Cao M, Yan L P and Zhang H B 2013 Micron 52-53 62
[4] Feng G B, Wang F, Hu T C and Cao M 2015 Chin. Phys. B 24 117901
[5] Wang F, Feng G B, Zhang X S and Cao M 2016 Micron 90 64
[6] He Y N, Ye M, Hu S G 2013 J. Appl. Phys. 113 074904
[7] Weng M, Cao M, Zhao H J and Zhang H B 2014 Rev. Sci. Instru. 85 036108
[8] Zhang H B, Hu X C, Wang R, Cao M, Zhang N and Cui W Z 2012 Rev. Sci. Instru. 83 066105
[9] Suzuki M, Kumagai K, Sekiguchi T, Cassell A M, Saito T and Yang C Y 2008 J. Appl. Phys. 104 114306
[10] Feng G B, Wang F and Cao M 2015 Acta Phys. Sin. 64 227901 (in Chinese)
[11] Renoud R, Mady F, Bigarre J and Ganachaud J P 2005 J. Euro. Cera. Soci. 25 2805
[12] Bundaleski N, Shaw B J, Silva A G, Moutinho A M C and Teodoro O M N D 2011 Scanning 33 266
[13] Lin Y and Joy D C 2005 Surf. Interf. Anal. 37 895
[14] Furman M A and Pivi M T F 2013 Phys. Rev. Accel. Beams 16 069901
[15] Vaughan J R M and Abuelma'Atti M T 1991 IEEE Trans. Electron. Dev. 38 1982
[16] Vaughan J R M 1989 IEEE Trans. Elec. Devi. 36 1963
[17] Furman M A and Pivi M T F 2002 Phys. Rev. St. Accel. Beams 5 124404
[18] Lane R O and Zaffarano D J 1954 Phys. Rev. 94 960
[19] Bruining H 1955 Physics and Applications of Secondary Electron Emission (London: Pergamon Press) pp: 93-96
[20] Wittry D B and Kyser D F 1965 J. Appl. Phys. 36 1387
[21] Streitwolf H W 1959 Annalen. Der. Physik. 458 183
[22] Vaughan R 1993 IEEE Trans. Electron. Dev. 40 830
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[3] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[12] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[13] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[14] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[15] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
No Suggested Reading articles found!