Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097801    DOI: 10.1088/1674-1056/26/9/097801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure and photoluminescence property of a novel white emission phosphor Na3MgZr(PO4)3:Dy3+ for warm white light emitting diodes

Ge Zhu(朱革)1, Zhuo-Wei Li(李卓为)1, Chuang Wang(王闯)1, Fa-Guang Zhou(周发光)1, Yan Wen(温艳)2, Shuang-Yu Xin(辛双宇)1
1 College of New Energy, Bohai University, Jinzhou 121000, China;
2 School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  To explore suitable single-phase white emission phosphors for warm white light emitting diodes, a series of novel phosphors Na3MgZr(PO4)3:xDy3+ (0≤ x≤ 0.03) is prepared, and their phase purities as well as photoluminescence properties are discussed in depth via x-ray diffraction structure refinement and photoluminescence spectrum measurement. The electronic structure properties of the Na3MgZr(PO4)3 host are calculated. The results reveal that Na3MgZr(PO4)3 possesses a direct band gap with a band gap value of 4.917 eV. The obtained Na3MgZr(PO4)3:Dy3+ phosphors are all well crystallized in trigonal structure with space group R3c, which has strong absorption around 365 nm and can generate warm white light emissions peaking at 487, 576, and 673 nm upon ultraviolet excitation, which are attributed to the transitions from 4F9/2 to 6H15/2, 6H13/2, and 6H11/2 of Dy3+ ions, respectively. The optimal doping content, critical distance, decay time, and Commission International de L'Eclairage (CIE) chromaticity coordinates are investigated in Dy3+ ion-doped Na3MgZr(PO4)3. The thermal quenching analysis shows that Na3MgZr(PO4)3:Dy3+ has a good thermal stability, and the thermal activation energy is calculated. The performances of Na3MgZr(PO4)3:Dy3+ make it a potential single-phase white emission phosphor for warm white light emitting diode.
Keywords:  optical materials      optical properties      luminescence  
Received:  19 January 2017      Revised:  17 April 2017      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.55.Hx (Other solid inorganic materials)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the Doctoral Research Fund of Liaoning Province, China (Grant No. 201601351), the National Natural Science Foundation of China (Grant No. 51502142), and the General Program of Natural Science Foundation of the Jiangsu Provincial Higher Education Institutions, China (Grant No. 15KJB430021).
Corresponding Authors:  Shuang-Yu Xin     E-mail:  xinshuangyu@bhu.edu.cn

Cite this article: 

Ge Zhu(朱革), Zhuo-Wei Li(李卓为), Chuang Wang(王闯), Fa-Guang Zhou(周发光), Yan Wen(温艳), Shuang-Yu Xin(辛双宇) Electronic structure and photoluminescence property of a novel white emission phosphor Na3MgZr(PO4)3:Dy3+ for warm white light emitting diodes 2017 Chin. Phys. B 26 097801

[1] Yu X, Wang T, Xu X, Jiang T, Yu H, Jiao Q, Zhou D and Qiu J 2014 RSC Adv. 4 963
[2] Bian L, Wang T, Song Z, Liu Z, Li J and Liu Q 2013 Chin. Phys. B 22 077801
[3] Liu W Q, Chao K F, Wu W J, Bao F Q and Zhou B Q 2016 Acta Phys. Sin. 65 207801 (in Chinese)
[4] Zhuo N Z, Zhang N, Li B C, Li W Q, He Q Y, Shi F H, Zhu Y H, Xing H D and Wang H B 2016 Acta Phys. Sin. 65 058501 (in Chinese)
[5] Roushan M, Zhang X and Li J 2012 Angew. Chem. Int. Ed. 124 451
[6] Du Y, Shao C, Dong Y, Yang Q and Hua W 2015 Chin. Phys. B 24 0117801
[7] Lin C C and Liu R S 2011 J. Phys. Chem. Lett. 2 1268
[8] Ci Z, Zhang J and Wang Y 2010 Chin. Phys. B 19 057803
[9] Liu B, Kong L J and Shi C S 2007 J. Lumin. 122 121
[10] Vijay S, Zhu J, Gundu Rao T K, Manoj T and Pan H 2005 Chin. Phys. Lett. 22 03182
[11] Orlova A I 2002 Radiochemistry 44 423
[12] Park Y U, Seo D H, Kim B, Hong K P, Kim H, Lee S, Shakoor R A, Miyasaka K, Tarascon J M and Kang K 2012 Scientific Reports 2 704
[13] Oota T and Yamai I 1986 J. Am. Ceram. Soc. 69 1
[14] Masui T, Koyabu K, Tamura S and Imanaka N 2006 J. Alloys Compd. 418 73
[15] Mouline A, Alami M, Brochu R, Olazcuag R, Parent C and Flem G L 2000 J. Solid State Chem. 152 453
[16] Sobha K C and Rao K J 1996 J. Phys. Chem. Solids 57 1263
[17] Kozhevnikova N M and Tsyretarova S Y 2015 Inorg. Mater. 51 494
[18] Koguma I, Oishi K, Takase S and Shimizua Y 2009 Ecs Transactions 16 81
[19] He Y, Quan B, Wang Y, Cheng Y and Wang B 2007 Mater. Lett. 61 4519
[20] Kim Y H and Im W B 2015 28th ECS Meeting, Phoenix, AZ
[21] Kumar B V, Velchuri R, Prasad G and Vithal M 2009 Ceram. Int. 35 2719
[22] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Zeitschrift fuer Kristallographie 220 567
[23] Miura H, Ushio T, Nagai K, Fujimoto D, Lepp Z, Takahashi H and Tamura R 2003 Cryst. Growth Des. 3 6
[24] Shannon R 1976 Acta Crystallogr. 32 751
[25] Xiu Z, Liu S, Ren M, Liu J, Pan J and Cui X 2006 J Alloy Compd. 425 261
[26] Ye S, Xiao F, Pan Y X, Ma Y Y and Zhang Q Y 2010 Mater. Sci. Eng. R 7 1
[27] Xin S, Wang Y, Wang Z, Zhang F, Wen Y and Zhu G 2011 Electrochem. Solid-State Lett. 14 H438
[28] Tian Y, Chen B J, Hua R N, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B and Yu H Q 2011 J. Appl. Phys. 109 053511
[29] Liu C Y, Xia Z G, Molokeev M S, Liu Q L and Guo H 2015 J. Am. Ceram. Soc. 98 1870
[30] Wang X C and Wang Y H 2015 J. Phys. Chem. C 119 16208
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[10] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[15] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
No Suggested Reading articles found!