|
|
Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure |
Yangfeng Li(李阳锋)1,2, Yang Jiang(江洋)1,2, Junhui Die(迭俊珲)1,2, Caiwei Wang(王彩玮)1,2, Shen Yan(严珅)1,2, Ziguang Ma(马紫光)1,2, Haiyan Wu(吴海燕)1,2, Lu Wang(王禄)1,2, Haiqiang Jia(贾海强)1,2, Wenxin Wang(王文新)1,2, Hong Chen(陈弘)1,2 |
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The green light emitting diodes (LEDs) have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum. In this research, a novel quantum well structure was designed to improve the electroluminescence (EL) of green InGaN-based LEDs. Compared with the conventional quantum well structure, the novel structure LED gained 2.14 times light out power (LOP) at 20-mA current injection, narrower FWHM and lower blue-shift at different current injection conditions.
|
Received: 19 June 2017
Revised: 29 June 2017
Accepted manuscript online:
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.21.Fg
|
(Quantum wells)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400300 and 2016YFB0400600), the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, and 11374340), and the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission (Grant No. Z151100003515001). |
Corresponding Authors:
Hong Chen
E-mail: hchen@iphy.ac.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘) Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure 2017 Chin. Phys. B 26 087311
|
[1] |
Ponce F A and Bour D P 1997 Nature 386 351
|
[2] |
Muthu S, Schuurmans F J P and Pashley M D 2002 IEEE J. Sel. Top. Quantum Opt. 8 333
|
[3] |
Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nat. Photon. 3 180
|
[4] |
Singh R, Doppalapudi D, Moustakas T D and Romano L T 1997 Appl. Phys. Lett. 70 1089
|
[5] |
Ho I and Stringfellow G B 1996 Appl. Phys. Lett. 69 2701
|
[6] |
Mukai T, Yamada M and Nakamura S 1998 Jpn. J. Appl. Phys. 37 L1358
|
[7] |
Zhou Q, Xu M and Wang H 2016 Opto-Electron. Rev. 24 1
|
[8] |
Hu W D, Chen X S, Quan Z J, Xia C S, Lu W and Yuan H J 2006 Appl. Phys. Lett. 89 243501
|
[9] |
Kollmer H, Im J S, Heppel S, Off J, Scholz F and Hangleiter A 1999 Appl. Phys. Lett. 74 82
|
[10] |
Peng L H, Chuang C W and Lou L H 1999 Appl. phys. Lett. 74 795
|
[11] |
Li B, Huang S J, Wang H L, Wu H L, Wu Z S, Wang G and Jiang H 2017 Chin. Phys. B 26 087307
|
[12] |
Lv W B, Wang L, Wang L, Xing Y C, Yang D, Hao Z B and Luo Y 2014 Appl. Phys. Express 7 025203
|
[13] |
Lv W B, Wang L, Wang J X, Hao Z B and Luo Y 2012 Nanoscale Res. Lett. 7 617
|
[14] |
Zhang G G, Guo X, Ren F F, Li Y, Liu B, Ye J D, Ge H X, Xie Z L, Zhang R, Tan H H and Jagadish C 2016 ACS Photon. 3 1912
|
[15] |
Xia C S, Li Z M S, Lu W, Zhang Z H, Sheng Y, Hu W D and Cheng L W 2012 J. Appl. Phys. 111 094503
|
[16] |
Cho C Y and Park S J 2016 Opt. Express 24 7488
|
[17] |
Park J Y, Lee J H, Jung S and Ji T 2016 Phys. Status Solidi A 213 1610
|
[18] |
Deng Z, Jiang Y, Ma Z G, Wang W X, Jia H Q, Zhou J M and Chen H 2013 Sci. Rep-UK 3 3389
|
[19] |
Tzou A J, Lin D W, Yu C R, Li Z Y, Liao Y K, Lin B C, Huang J K, Lin C C, Kao T S, Kuo H C and Chang C Y 2016 Opt. Express 24 11387
|
[20] |
Liu X H, Liu J L, Mao Q H, Wu X M, Zhang J L, Wang G X, Quan Z J, Mo C L and Jiang F Y 2016 Semicond. Sci. Technol. 31 025012
|
[21] |
Qiao L, Ma Z G, Chen H, Wu H Y, Chen X F, Yang H J, Zhao B, He M, Zheng S W and Li S T 2016 Chin. Phys. B 25 107803
|
[22] |
Lv W B, Wang L, Wang J X, Xing Y C, Zheng J Y, Yang D, Hao Z B and Luo Y 2013 Jpn. J. Appl. Phys. 52 08JG13
|
[23] |
Du C H, Ma Z G, Zhou J M, Lu T P, Jiang Y, Zuo P, Jia H Q and Chen H 2014 Appl. Phys. Lett. 105 071108
|
[24] |
Tsai S C, Fang H C, Lai Y L, Lu C H and Liu C P 2016 J. Alloys Compd. 669 156
|
[25] |
Ren P, Zhang N, Xue B, Liu Z, Wang J X and Li J M 2016 J. Phys. D: Appl. Phys. 49 175101
|
[26] |
Yang J, Zhao D G, Jiang D S, Chen P, Zhu J J, Liu Z S, Le L C, He X G, Li X J and Liu J P 2016 Vacuum 129 99
|
[27] |
Nakajima Y, Lin Y T and Dapkus P D 2016 Phys. Status Solidi A 213 2452
|
[28] |
Tsai S C, Lu C H and Liu C P 2016 Nano Energy 28 373
|
[29] |
Park E H, Kang D N H, Ferguson I T, Park S K J J S and Yoo T K 2007 Appl. Phys. Lett. 90 031102
|
[30] |
Liu J P, Ryou J H, Dupuis R D, Han J, Shen G D and Wang H B 2008 Appl. Phys. Lett. 93 021102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|