Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087103    DOI: 10.1088/1674-1056/26/8/087103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Uniaxial strain-modulated electronic structures of CdX (X=S, Se, Te) from first-principles calculations: A comparison between bulk and nanowires

Linlin Xiang(相琳琳), Shenyuan Yang(杨身园)
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

Using first-principles calculations based on density functional theory, we systematically study the structural deformation and electronic properties of wurtzite CdX (X=S, Se, Te) bulk and nanowires (NWs) under uniaxial [0001] strain. Due to the intrinsic shrinking strain induced by surface contraction, large NWs with {1010} facets have heavy hole (HH)-like valence band maximum (VBM) states, while NWs with {1120} facets have crystal hole (CH)-like VBM states. The external uniaxial strain induces an HH-CH band crossing at a critical strain for both bulk and NWs, resulting in nonlinear variations in band gap and hole effective mass at VBM. Unlike the bulk phase, the critical strain of NWs highly depends on the character of the VBM state in the unstrained case, which is closely related to the size and facet of NWs. The critical strain of bulk is at compressive range, while the critical strain of NWs with HH-like and CH-like VBM appears at compressive and tensile strain, respectively. Due to the HH-CH band crossing, the charge distribution of the VBM state in NWs can also be tuned by the external uniaxial strain. Despite the complication of the VBM state, the electron effective mass at conduction band minimum (CBM) of NWs shows a linear relation with the CBM-HH energy difference, the same as the bulk material.

Keywords:  first-principles calculations      electronic properties      semiconductor nanowires      uniaxial strain  
Received:  10 March 2017      Revised:  04 May 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.61.Ga (II-VI semiconductors)  
  77.80.bn (Strain and interface effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204296 and 61427901) and the National Basic Research Program of China (Grant Nos. 2014CB643902 and 2013CB933304).

Corresponding Authors:  Shenyuan Yang     E-mail:  syyang@semi.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Linlin Xiang(相琳琳), Shenyuan Yang(杨身园) Uniaxial strain-modulated electronic structures of CdX (X=S, Se, Te) from first-principles calculations: A comparison between bulk and nanowires 2017 Chin. Phys. B 26 087103

[1] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
[2] Peng X, Schlamp M C, Kadavanich A V and Alivisatos A P 1997 J. Am. Chem. Soc. 119 7019
[3] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
[4] Wang G, Yang X, Qian F, Zhang J Z and Li Y 2010 Nano Lett. 10 1088
[5] Poplawsky J D, Guo W, Paudel N, Ng A, More K, Leonard D and Yan Y 2016 Nat. Commun. 7 12537
[6] Landolt-Boörnstein 1982 Numerical Data and Functional Relationships in Science and Technology, New Series (New York: Springer) Group III, Vols. 17a and 22a
[7] Wei S H, Zhang S B and Zunger A 2000 J. Appl. Phys. 87 1304
[8] Wei S H and Zhang S B 2000 Phys. Rev. B 62 6944
[9] Kim S, Fisher B, Eisler H J and Bawendi M 2003 J. Am. Chem. Soc. 125 11466
[10] Zeng Q, Kong X, Sun Y, Zhang Y, Tu L, Zhao J and Zhang H 2008 J. Phys. Chem. C 112 8587
[11] Schäffler F 1997 Semicond. Sci. Technol. 12 1515
[12] Ng W L, Lourenço M A, Gwilliam R M, Ledain S, Shao G and Homewood K P 2001 Nature 410 192
[13] Fischetti M V and Laux S E 1996 J. Appl. Phys. 80 2234
[14] Chuang S L and Chang C S 1996 Phys. Rev. B 54 2491
[15] Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 52 11969
[16] Smith A M, Mohs A M and Nie S 2009 Nat. Nanotechnol. 4 56
[17] Ertekin E, Greaney P A, Chrzan D C and Sands T D 2005 J. Appl. Phys. 97 114325
[18] Raychaudhuri S and Yu E T 2006 J. Vac. Sci. Technol. B 24 2053
[19] Yang S, Prendergast D and Neaton J B 2010 Nano Lett. 10 3156
[20] Balet L P, Ivanov S A, Piryatinski A, Achermann M and Klimov V I 2004 Nano Lett. 4 1485
[21] Fu H, Wang L W and Zunger A 1998 Phys. Rev. B 57 9971
[22] Pokatilov E P, Fonoberov V A, Fomin V M and Devreese J T 2001 Phys. Rev. B 64 245328
[23] Sarkar P, Springborg M and Seifert G 2005 Chem. Phys. Lett. 405 103
[24] Peng X and Logan P 2010 Appl. Phys. Lett. 96 143119
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Kim Y S, Marsman M, Kresse G, Tran F and Blaha P 2010 Phys. Rev. B 82 205212
[30] Xu Y N and Ching W Y 1993 Phys. Rev. B 48 4335
[31] Yadav S K, Sadowski T and Ramprasad R 2010 Phys. Rev. B 81 144120
[32] Peng X, Wei Q and Copple A 2014 Phys. Rev. B 90 085402
[33] Wu Y, Chen G, Wei S H, Al-Jassim M M and Yan Y 2011 Appl. Phys. Lett. 99 262103
[34] Yang S, Prendergast D and Neaton J B 2011 Appl. Phys. Lett. 98 152108
[35] Shantharama L G, Adams A R, Ahmad C N and Nicholas R J 1984 J. Phys. C: Solid State Phys. 17 4429
[36] Li J and Wang L W 2005 Phys. Rev. B 72 125325
[37] Zhao X, Wei C M, Yang L and Chou M Y 2004 Phys. Rev. Lett. 92 236805
[38] Persson M P and Xu H Q 2004 Nano Lett. 4 2409
[39] Kou L, Li C, Zhang Z Y, Chen C and Guo W 2010 Appl. Phys. Lett. 97 053104
[40] Huan H, Chen L and Ye X 2017 Nanoscale Res. Lett. 12 178
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
No Suggested Reading articles found!