Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087101    DOI: 10.1088/1674-1056/26/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of anatase and rutile TiO2 studied by GGA+U

Jinping Li(李金平)1,3, Songhe Meng(孟松鹤)1, Liyuan Qin(秦丽媛)1, Hantao Lu(陆汉涛)2
1 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China;
2 Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials (Ministry of Education), Lanzhou University, Lanzhou 730000, China;
3 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
Abstract  

The optical properties of thermally annealed TiO2 samples depend on their preparation process, and the TiO2 thin films usually exist in the form of anatase or rutile or a mixture of the two phases. The electronic structures and optical properties of anatase and rutile TiO2 are calculated by means of a first-principles generalized gradient approximation (GGA) +U approach. By introducing the Coulomb interactions on 3d orbitals of Ti atom (Ud) and 2p orbitals of O atom (Up), we can reproduce the experimental values of the band gap. The optical properties of anatase and rutile TiO2 are obtained by means of the GGA+U method, and the results are in good agreement with experiments and other theoretical data. Further, we present the comparison of the electronic structure, birefringence, and anisotropy between the two phases of TiO2. Finally, the adaptability of the GGA+U approach has been discussed.

Keywords:  TiO2      first-principles      GGA+U      electronic structure      optical properties  
Received:  01 November 2016      Revised:  02 May 2017      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.20.Fm (Birefringence)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11672087, 11272107, and 11402252).

Corresponding Authors:  Jinping Li     E-mail:  lijinping@hit.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Jinping Li(李金平), Songhe Meng(孟松鹤), Liyuan Qin(秦丽媛), Hantao Lu(陆汉涛) Optical properties of anatase and rutile TiO2 studied by GGA+U 2017 Chin. Phys. B 26 087101

[1] Woan K, Pyrgiotakis G and Sigmund W 2009 Adv. Mater. 21 2233
[2] Gumy D, Giraldo S A, Rengifo J and Pulgarin C 2008 Appl. Catal. B: Environ. 78 19
[3] Meen T H, Water W, Chen W R, Chao S M, Ji L W and Huang C J 2009 J. Phys. Chem. Solids 70 472
[4] Belcarz A, Bienias J, Surowska B and Ginalska G 2010 Thin Solid Film 519 797
[5] Triyoso D H, Hegde R I, Zollner S, Ramon M E, Kalpat S, Gregory R, Wang X D, Jiang J, Raymond M, Rai R, Werho D, Roan D, White B E Jr and Tobin P J 2005 J. Appl. Phys. 98 054104
[6] Cisneros-Morales M C and Aita C R 2008 Appl. Phys. Lett. 93 021915
[7] Manuel Cardona and Gunther Harbeke 1965 Phys. Rev. A 137 1467
[8] Noriko Hosaka, Takao Sekiya, Chikatoshi Satoko and Susumu Kurita 1997 J. Phys. Soc. Jpn. 66 877
[9] Jellison G E Jr, Boatner L A, Budai J D, Jeong B S and Norton D P 2003 J. Appl. Phys. 93 9537
[10] Chen H 2009 Chin. J. Lumin. Sci. 30 697 (in Chinese)
[11] Zhang Y W, Yin C H, Zhao Q, Li F Q, Zhu S S and Liu H S 2012 Acta Phys. Sin. 61 027801 (in Chinese)
[12] Keith M Glassford and James R Chelikowsky 1992 Phys. Rev. B 46 1284
[13] Mo S D and Ching WY 1995 Phys. Rev. B 51 13023
[14] Park S G, Blanka M K and Nishi Y 2010 Phys. Rev. B 82 115109
[15] Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y and Han G Ro 2014 Chin. Phys. B 23 057101
[16] Xu Z C, Hou Q Y 2015 Acta Phys. Sin. 64 157101 (in Chinese)
[17] Loschen C, Carrasco J, Neyman K M and Illas F 2007 Phys. Rev. B 75 035115
[18] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[19] Li J P, Meng S H, Li L L, Lu H T and Tohyama T 2014 Comput. Mater. Sci. 81 397
[20] Jeremy K Burdett, Timothy Hughbanks, Gordon J Miller, James W Richardson Jr and Joseph V Smith 1987 J. Am. Chem. Soc. 109 3639
[21] Hyeok Choi, Elias Stathatos and Dionysios D Dionysiou 2006 Appl. Catal. B: Environ. 63 60
[22] Tang H, Berger H and Schim P E 1993 Solid State Commun. 87 847
[23] Diebold U 2003 Surf. Sci. Rep. 48 53
[24] Wemple S H 1977 J. Chem. Phys. 67 2151
[25] Wang J, Li H P and Stevens R 1992 J. Mater. Sci. 27 5397
[26] Schubert M, Rheinlander B, Woollam J A, Johs B and Herzinger C M 1996 J. Opt. Soc. Am. A 13 875
[27] Jellison G E, Boatner L A, Budai J D, Jeong B S and Norton D P 2003 J. Appl. Phys. 93 9537
[28] Jellison G E Jr, Modine F A and Boatner L A 1997 Opt. Lett. 22 1808
[29] Li J P, Han J C, Meng S H, Lu H T and Tohyama T 2013 Appl. Phys. Lett. 103 071916
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
No Suggested Reading articles found!