Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 086501    DOI: 10.1088/1674-1056/26/8/086501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural and optical properties of thermally reduced graphene oxide for energy devices

Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad
Department of Physics, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
Abstract  

Natural intercalation of the graphite oxide, obtained as a product of Hummer's method, via ultra-sonication of water dispersed graphite oxide has been carried out to obtain graphene oxide (GO) and thermally reduced graphene oxide (RGO). Here we report the effect of metallic nitrate on the oxidation properties of graphite and then formation of metallic oxide (MO) composites with GO and RGO for the first time. We observed a change in the efficiency of the oxidation process as we replaced the conventionally used sodium nitrate with that of nickel nitrate Ni(NO3)2, cadmium nitrate Cd(NO3)2, and zinc nitrate Zn(NO3)2. The structural properties were investigated by x-ray diffraction and observed the successful formation of composite of MO-GO and MO-RGO (M = Zn, Cd, Ni). We sought to study the effect on the oxidation process through optical characterization via UV-Vis spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Moreover, Thermo Gravimetric Analysis (TGA) was carried out to confirm >90% weight loss in each process thus proving the reliability of the oxidation cycles. We have found that the nature of the oxidation process of graphite powder and its optical and electrochemical characteristics can be tuned by replacing the sodium nitrate (NaNO3) by other metallic nitrates as Cd(NO3)2, Ni(NO3)2, and Zn(NO3)2. On the basis of obtained results, the synthesized GO and RGO may be expected as a promising material in antibacterial activity and in electrodes fabrication for energy devices such as solar cell, fuel cell, and super capacitors.

Keywords:  thermal properties of graphene oxide and reduced graphene oxide      optical properties      structural properties      fuel cell      composite materials  
Received:  20 January 2017      Revised:  10 May 2017      Accepted manuscript online: 
PACS:  65.80.Ck (Thermal properties of graphene)  
  78.67.Wj (Optical properties of graphene)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  82.47.Ed (Solid-oxide fuel cells (SOFC))  
Corresponding Authors:  Samia Aslam     E-mail:  saslam@ciitlahore.edu.pk
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad Structural and optical properties of thermally reduced graphene oxide for energy devices 2017 Chin. Phys. B 26 086501

[1] Tifeng J, Yazhou L, Yitian W, Qingrui Z, Xuehai Y, Faming G, Adam J P B, Jianzhao L, Tingying Z and Bingbing L 2015 Sci. Rep. 5 12451
[2] Nianduan L, Lingfei W, Ling L and Ming L 2017 Chin. Phys. B 26 036804
[3] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906
[4] Maiti R, Manna S, Midya A and Ray S 2013 Opt. Express 21 26034
[5] Kannappana J J S, Kaliyappanb K, Maniand R K, Samuthira P A, Yange H and Leeb Y 2013 arXiv e-prints 25
[6] Hou J, Shao Y, Ellis M W, Moore R B and Yi B 2011 Phys. Chem. Chem. Phys. 13 15384
[7] Yuyan S, Wang J, Hong W, Jun L, Ilhan A A and Lina Y 2010 Electroanalysis 22 1027
[8] Yuan W, Chen J and Shi G 2014 Mater. Today 17 77
[9] Lee H, Ihm J, Cohen M L and Louie S G 2010 Nano 10 793
[10] Choi H, Kim H, Hwang S, Choi W and Jeon M 2011 Sol. Energy Mater. Sol. Cells 95 296
[11] Yang Y, Asiri A M, Tang Z, Du D and Lin Y 2013 Mater. Today 16 365
[12] Randviir E P, Brownson D A and Banks C E 2014 Phys. Chem. Chem. Phys. 16 4598
[13] Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L and Ferrari A C 2012 Mater. Today 15 564
[14] Wang Y B, Yin W H, Han Q, Yang X H, Ye H, Lü Q Q and Yin D D 2017 Chin. Phys. B 26 028101
[15] Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217
[16] Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W and Tour J M 2010 ACS Nano 4 4806
[17] Gengler R Y N, Spyrou K and Rudolf P 2010 Appl. Phys. D 43 374015
[18] Lai Q, Zhu S,Luo X, Zou M and Huang S 2010 AIP Adv. 2 3
[19] Shang J, Ma L, Li J, Ai W, Yu T and Gurzadyan G G 2012 Sci. Rep. 2 792
[20] Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S and Cui D 2011 Theranostics 1 240
[21] Omidvar A, RashidianVaziri M R, Jaleh1 B, Partovi Shabestari N and Noroozi M 2016 Chin. Phys. B 25 118102
[22] Sumit S, Trevor A T, Shobha S, Ezana N, Haiyan C and Jianming B 2011 Appl. Phys. Lett. 99 013104
[23] Zhang C, Chen M, Xu X, Zhang L, Zhang L, Xia F, Li X, Liu Y, Hu W and Gao J 2014 Nanotechnology 25 135707
[24] Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li L H, Chen Y and Fox B 2014 Sci. Rep. 4 4375
[25] Cao H Y, Bi H C, Xie X, Su S and S Li T 2016 Acta Phys. Sin. 65 146802 (in Chinese)
[26] Mahmood N, Zhang C, Yin H and Hou Y 2014 J. Mater. Chem. 2 15
[27] Ji C, Bowen Y, Chun L and Gaoquan S 2013 Carbon 64 225
[28] Wenhan N, Ligui L, Xiaojun L, Weijia Z, Wei L, Jia L and Shaowei C 2015 Int. J. Hydrogen Energy 40 5106
[29] Zhang Y, Xie L Z, Li H R, Wang P, Liu S, Peng Y Q and Zhang M 2015 Chin. Phys. Lett. 32 098103
[30] Yuvaraj H, Walter V and Jae J S 2014 Electro. Chimica. Acta 120 65
[31] Zhigang W, Yong H, Wenlong Y, Mojiao Z and Xiao H 2012 Sensors 12 4860
[32] Dezhi and LidongL L G 2011 Nanotechnology 22 325601
[33] Koushik B, Arnab M, Manish K M and Goutam D 2014 Langmuir 30 3209
[34] Zaien M, Ahmed N M and Hassan 2013 Mater. Lett. 105 84
[35] Ehab S, Moataz M, Rabeay Y A H and Ibrahim M El S 2016 J. Nanostruct. Chem. 6 137
[36] Xiaochang Q, Shijun L, Chenghang Y and Rong C 2015 Catalysts 5 981
[37] Ban F Y, Majid S R, Huang N M and Lim N H 2012 Int. J. Electrochem. Sci. 7 4345
[38] Yongfu T, Yanyan L, Wanchun G, Teng C, Hongchao W, Shengxue Y and Faming G 2014 J. Phys. Chem. C 118 24866
[39] Debarati R C, Chanderpratap S and Amit P 2014 RCS Adv. 4 15138
[40] Gonçalves N S, Carvalho J A, Lima Z M and Sasaki J M 2012 Mater. Lett. 72 36
[41] Vimlesh C and Kwang S K 2011 Chem. Commun. 47 3942
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[5] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[6] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[7] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[8] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[9] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[10] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[13] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[14] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!