|
|
Raman sideband cooling of rubidium atoms in optical lattice |
Chun-Hua Wei(魏春华)1,2, Shu-Hua Yan(颜树华)1,2 |
1 College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract We develop a simple and practical scheme to apply sideband cooling to a cloud of rubidium atoms. A sample containing 4×1070 87Rb is trapped in a far red detuned optical lattice. Through optimizing the relevant parameters, i.e., laser detuning, magnetic field, polarization, and duration time, a temperature around 1.5 μK and phase space density close to 1/500 are achieved. Compared with polarization gradient cooling, the temperature decreases by around one order of magnitude. This technique could be used in high precision measurement such as atomic clocks and atom interferometer. It could also serve as a precooling means before evaporation cooling in a dipole trap, and may be a promising method of achieving quantum degeneracy with purely optical means.
|
Received: 23 February 2017
Revised: 03 May 2017
Accepted manuscript online:
|
PACS:
|
07.05.Fb
|
(Design of experiments)
|
|
37.10.De
|
(Atom cooling methods)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51275523), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134307110009), the Graduate Innovative Research Fund of Hunan Province, China (Grant No. CX20158015), and the Excellent Graduate Innovative Fund of National University of Defense Technology (NUDT) (Grant No. B150305). |
Corresponding Authors:
Shu-Hua Yan
E-mail: yanshuhua996@163.com
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华) Raman sideband cooling of rubidium atoms in optical lattice 2017 Chin. Phys. B 26 080701
|
[1] |
Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L and Metcalf H J 1988 Phys. Rev. Lett. 61 169
|
[2] |
Cooper C J, Hillenbrand G, Rink J, Townsend C G, Zetie K and Foot C J 1994 Europhys. Lett. 28 39
|
[3] |
Dashevskaya E I, Nikitin E E, Voronin A I and Zembekov A A 1970 Can. J. Phys. 48 981.
|
[4] |
Kerman A J 2002 "Raman Sideband Cooling and Cold Atomic Collisions in Optical Lattices," Ph. D. Dissertation (Stanford University)
|
[5] |
Burnett K, Julienne P S and Suominen K A 1996 Phys. Rev. Lett. 77 1416
|
[6] |
Julienne P 1996 Journal of Research of the National Institute of Standards and Technology 101 487
|
[7] |
Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
|
[8] |
Davidson N, Lee H J, Kasevich M and Chu S 1994 Phys. Rev. Lett. 72 3158
|
[9] |
Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S and Chu S 1991 Phys. Rev. Lett. 66 2297
|
[10] |
Reichel J, Morice O, Tino G M and Salomon C 1994 Europhys. Lett. 28 477
|
[11] |
Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L and Clairon A 1996 Phys. Rev. A 53 R3734
|
[12] |
Boiron D, Trich C, Meacher D R, Verkerk P and Grynberg G 1995 Phys. Rev. A 52 R3425
|
[13] |
Ketterle W, Davis K B, Joffe M A, Martin A and Pritchard D E 1993 Phys. Rev. Lett. 70 2253
|
[14] |
Townsend C G, Edwards N H, Zetie K P, Cooper C J, Rink J and Foot C J 1996 Phys. Rev. A 53 1702
|
[15] |
Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen-Tannoudji C 1988 Phys. Rev. Lett. 61 826
|
[16] |
Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
|
[17] |
Mnoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A and Bouyer P 2011 Opt. Lett. 36 4128.
|
[18] |
Wolf S, Oliver S J and Weiss D S 2000 Phys. Rev. Lett. 85 4249
|
[19] |
Poulsen G, Miroshnychenko Y and Drewsen M 2012 Phys. Rev. A 86 051402
|
[20] |
Seck C M, Kokish M G, Dietrich M R and Odom B C 2016 Phys. Rev. A 93 053415
|
[21] |
Han D J, Wolf S, Oliver S, McCormick C, DePue M T and Weiss D S 2000 Phys. Rev. Lett. 85 724
|
[22] |
Grobner M, Weinmann P, Kirilov E and Nagerl H C 2017 Phys. Rev. A 95 033412
|
[23] |
Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T and Zwierlein M W 2015 Phys. Rev. Lett. 114 193001
|
[24] |
Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S and Greiner M 2015 Phys. Rev. Lett. 114 213002
|
[25] |
White J D and Scholten R E 2012 Rev. Sci. Instrum. 83 113104
|
[26] |
Takase K, Stockton J K and Kasevich M A 2007 Opt. Lett. 32 2617
|
[27] |
Kastberg A, Phillips W D, Rolston S L, Spreeuw R J C and Jessen P S 1995 Phys. Rev. Lett. 74 1542
|
[28] |
Wei C H, Yan S H, Yang J, Wang G C, Jia A A, Luo Y K and Hu Q Q 2017 Acta Phys. Sin. 66 010701 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|