Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 065206    DOI: 10.1088/1674-1056/26/6/065206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical study on the discharge characteristics and nonlinear behaviors of atmospheric pressure coaxial electrode dielectric barrier discharges

Ding-Zong Zhang(张定宗)1, Yan-Hui Wang(王艳辉)2, De-Zhen Wang(王德真)2
1 School of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421008, China;
2 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  The discharge characteristics and temporal nonlinear behaviors of the atmospheric pressure coaxial electrode dielectric barrier discharges are studied by using a one-dimensional fluid model. It is shown that the discharge is always asymmetrical between the positive pulses and negative pulses. The gas gap severely affects this asymmetry. But it is hard to acquire a symmetrical discharge by changing the gas gap. This asymmetry is proportional to the asymmetric extent of electrode structure, namely the ratio of the outer electrode radius to the inner electrode radius. When this ratio is close to unity, a symmetrical discharge can be obtained. With the increase of frequency, the discharge can exhibit a series of nonlinear behaviors such as period-doubling bifurcation, secondary bifurcation and chaotic phenomena. In the period-doubling bifurcation sequence the period-n discharge becomes more and more unstable with the increase of n. The period-doubling bifurcation can also be obtained by altering the discharge gas gap. The mechanisms of two bifurcations are further studied. It is found that the residual quasineutral plasma from the previous discharges and corresponding electric field distribution can weaken the subsequent discharge, and leads to the occurrence of bifurcation.
Keywords:  atmospheric dielectric-barrier discharge      numerical simulation      nonlinear behaviors  
Received:  29 December 2016      Revised:  22 March 2017      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  52.80.-s (Electric discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447244 and 11405208), the Science Foundation of Hengyang Normal University, China (Grant No. 14B41), and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology, China (Grant No. GDXX010).
Corresponding Authors:  Ding-Zong Zhang, Yan-Hui Wang     E-mail:  Zhangdingzong2006@163.com;wangyh@dlut.edu.cn

Cite this article: 

Ding-Zong Zhang(张定宗), Yan-Hui Wang(王艳辉), De-Zhen Wang(王德真) Numerical study on the discharge characteristics and nonlinear behaviors of atmospheric pressure coaxial electrode dielectric barrier discharges 2017 Chin. Phys. B 26 065206

[1] Sira M, Trunec D and St'ahel P 2008 J. Phys. D: Appl. Phys. 41 015205
[2] Fanelli F and Fracassi F 2016 Plasma Process. Polym. 13 470
[3] Laroussi M 2002 IEE Trans. Plasma Sci. 30 1409
[4] Penetrante B M, Bardsley J N and Hsiao M C 1997 Jpn. J. Appl. Phys. 36 5007
[5] Kogelschatz U 2002 IEE Trans. Plasma Sci. 30 1400
[6] Li X C, Zhang Q, Jia P Y, Chu J D, Zhang P P and Dong L F 2017 Phys. Plasmas 24 033505
[7] Walsh J L, Iza F, Janson N B, Law V J and Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201
[8] Walsh J L, Iza F, Janson N B and Kong M G 2012 Plasma Sources Sci. Technol. 21 034008
[9] Zhang J, Wang Y H and Wang D Z 2013 Phys. Plasmas 20 082315
[10] Wang X Q, Dai D, Hao Y P and Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese)
[11] Zhang D Z, Wang Y H and Wang D Z 2013 Phys. Plasmas 20 063504
[12] Ward A L 1962 J. Appl. Phys. 33 2789
[13] Deloche R, Monchicourt P, Cheret M and Lambert F 1976 Phys. Rev. A 13 1140
[14] Kulikovsky A A 1994 J. Phys. D: Appl. Phys. 27 2556
[15] Zhang D Z, Wang Y H, Sun J Z and Wang D Z 2012 Phys. Plasmas 19 043503
[16] Zhang Y T and He J 2013 Phys. Plasmas 20 013502
[17] Li X C, Niu D Y, Yin Z Q, Fang T Z and Wang L 2012 Phys. Plasmas 19 083505
[18] Yin Z Q, Wang Y, Zhang P P, Zhang Q and Li X C 2016 Chin. Phys. B 25 125203
[19] Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Dev. 16 64
[20] Li X C, Niu D Y, Xu L F and Chang Y Y 2012 Chin. Phys. B 21 075204
[21] Li X C, Zhao N, Fang T Z Liu Z H, Li L C and Dong L F 2008 Plasma Sources Sci. Technol. 17 015507
[22] Zhang H Y, Wang D Z and Wang X G 2007 Chin. Phys. 16 1089
[23] Dai D, Hou H X and Hao Y P 2011 Appl. Phys. Lett. 98 131503
[24] Dai D, Wang Q M and Hao Y P 2013 Acta Phys. Sin. 62 135204 (in Chinese)
[25] Ha Y, Wang H J and Wang X F 2012 Phys. Plasmas 19 012308
[26] Qi B, Huang J J, Zhang Z H and Wang D Z 2008 Chin. Phys. Lett. 25 3323
[27] Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C and Wang L M 2007 Appl. Phys. Lett. 91 221504
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!