Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 048701    DOI: 10.1088/1674-1056/26/4/048701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

Xiao-Jie Chen(陈晓洁), Qing Liang(梁清)
Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  

Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes.

Keywords:  biomembrane      phase separation      molecular dynamics simulation      coarse grain  
Received:  16 October 2016      Revised:  10 December 2016      Accepted manuscript online: 
PACS:  87.16.D- (Membranes, bilayers, and vesicles)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.14.Cc (Lipids)  
  81.16.Dn (Self-assembly)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11674287) and China Scholarship Council.

Corresponding Authors:  Qing Liang     E-mail:  qliang@zjnu.edu.cn

Cite this article: 

Xiao-Jie Chen(陈晓洁), Qing Liang(梁清) Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes 2017 Chin. Phys. B 26 048701

[1] Simons K and Toomre D 2000 Nat. Rev. Mol. Cell Biol. 1 31
[2] Lingwood D and Simons K 2009 Science 327 46
[3] Simons K and Sampaio J L 2011 Cold Spring Harbor Perspect. Biol. 3 a004697
[4] Sonnino S and Prinetti A 2013 Curr. Med. Chem. 20 4
[5] Shan Y P and Wang H D 2015 Chem. Soc. Rev. 44 3617
[6] Rheinstaedter M C and Mouritsen O G 2013 Curr. Opin. Colloid Interface Sci. 18 440
[7] Brown D A and London E 1998 Ann. Rev. Cell Dev. Biol. 14 111
[8] Spira F, Mueller N S, Beck G, von Olshausen P, Beig J and Wedlich-Soldner R 2012 Nat. Cell Biol. 14 640
[9] Toulmay A and Prinz W A 2013 J. Cell. Biol. 202 35
[10] Ingólfsson H I, Melo M N, van Eerden F J, Arnarez C, Lopez C A, Wassenaar T A, Periole X, de Vries A H, Tieleman D P and Marrink S J 2014 J. Am. Chem. Soc. 136 14554
[11] Ma Y, Hinde E and Gaus K 2015 BioEssays 57 93
[12] Carquin M, D'Auria L, Pollet H, Bongarzone E R and Tyteca D 2016 Prog. Lipid Res. 62 1
[13] Nicolson G L 2014 Biochim. Biophys. Acta Biomembr. 1838 1451
[14] Sevcsik E and Schütz G J 2016 BioEssays 38 129
[15] Leslie M 2011 Science 334 1046
[16] Pike L J 2009 J. Lipid Res. 50 S323
[17] Liang Q and Ma Y Q 2009 J. Phys. Chem. B 113 8049
[18] Wu Q Y and Liang Q 2014 Langmuir 30 1116
[19] Zheng B, Meng Q T, Robin L B S, Jonathan V S and Ye F F 2015 Chin. Phys. B 24 068701
[20] Filippov A, Orädd G and Lindblom G 2007 Biophys. J. 93 3182
[21] Soni S P, LoCascio D S, Liu Y, Williams J A, Bittman R, Stillwell W and Wassall S R 2008 Biophys. J. 95 203
[22] Veatch S L and Keller S L 2005 Biochim. Biophys. Acta 1746 172
[23] Risselada H J and Marrink S J 2008 Proc. Natl. Acad. Sci. USA 105 17367
[24] Baumgart T, Hess S T and Webb W W 2003 Nature 425 821
[25] Heberle F A and Feigenson G W 2011 Cold Spring Harbor Perspect. Biol. 3 a004630
[26] Hassan-Zadeh E, Baykal-Caglar E, Alwarawrah M and Huang J 2014 Langmuir 30 1361
[27] Ackerman D G and Feigenson G W 2015 J. Phys. Chem. B 119 4240
[28] Filippov A, Orädd G and Lindblom G 2004 Biophys. J. 86 891
[29] Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K and Walter P 2014 Molecular Biology of the Cell, 6th edn. (New York: Garland Science)
[30] Bagatolli L and Kumar P B S 2009 Soft Matter 5 3234
[31] Veatch S L and Keller S L 2002 Phys. Rev. Lett. 89 268101
[32] Himeno H, Shimokawa N, Komura S, Andelman D, Hamada T and Takagi M 2014 Soft Matter 10 7959
[33] Vequi-Suplicy C C, Riske K A, Knorr R L and Dimova R 2010 Biochim. Biophys. Acta Biomembr. 1798 1338
[34] Blosser M C, Starr J B, Turtle C W, Ashcraft J and Keller S L 2013 Biophys. J. 104 2629
[35] Shimokawa N, Hishida M, Seto H and Yoshikawa K 2010 Chem. Phys. Lett. 496 59
[36] Shimokawa N, Komura S and Andelman D 2011 Phys. Rev. E 84 031919
[37] Koldsø H and Sansom M S P 2015 J. Am. Chem. Soc. 137 14694
[38] da Rocha E L, Caramori G F and Rambo C R 2013 Phys. Chem. Chem. Phys. 15 2282
[39] Li Z L, Ding H M and Ma Y Q 2013 Soft Matter 9 1281
[40] Ding H M and Ma Y Q 2015 Small 11 1055
[41] Ding H M and Ma Y Q 2012 Biomaterials 33 5798
[42] Ding H M, Tian W D and Ma Y Q 2012 ACS Nano 6 1230
[43] Ji Q J, Yuan B, Lu X M, Yang K and Ma Y Q 2016 Small 12 1140
[44] Yang K and Ma Y Q 2012 Soft Matter 8 606
[45] Yang K and Ma Y Q 2010 Nat. Nanotechnol. 5 579
[46] Tian W D and Ma Y Q 2013 Chem. Soc. Rev. 42 705
[47] Marrink S J, de Vries A H and Mark A E 2004 J. Phys. Chem. B 108 750
[48] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and de Vries A H 2007 J. Phys. Chem. B 111 7812
[49] Marrink S J and Tieleman D P 2013 Chem. Soc. Rev. 42 6801
[50] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[51] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[52] Nosé S and Klein M L 1983 Mol. Phys. 50 1055
[53] Wassenaar T A, Ingólfsson H I, Böckmann R A, Tieleman D P and Marrink S J 2015 J. Chem. Theory Comput. 11 2144
[54] Melo M N, Ingólfsson H I and Marrink S J 2015 J. Chem. Phys. 143 243152
[55] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[56] Barnoud J, Rossi G and Monticelli L 2014 Phys. Rev. Lett. 112 068102
[57] Castillo N, Monticelli L, Barnoud J and Tieleman D P 2013 Chem. Phys. Lipids 169 95
[58] Allen W J, Lemkul J A and Bevan D R 2009 J. Comput. Chem. 30 1952
[59] Domański J, Marrink S J and Schäfer L V 2012 Biochim. Biophys. Acta Biomembr. 1818 984
[60] Liang Q, Wu Q Y and Wang Z Y 2014 J. Chem. Phys. 141 074702
[61] Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov V, Hell S and Eggeling C 2011 Biophys. J. 101 1651
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!