Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047306    DOI: 10.1088/1674-1056/26/4/047306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of reverse blocking performance in vertical power MOSFETs with Schottky-drain-connected semisuperjunctions

Wei Mao(毛维)1, Hai-Yong Wang(王海永)1, Xiao-Fei Wang(王晓飞)2, Ming Du(杜鸣)1, Jin-Feng Zhang(张金风)1, Xue-Feng Zheng(郑雪峰)1, Chong Wang(王冲)1, Xiao-Hua Ma(马晓华)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1
1 Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Xian Aerosemi Technology Co., LTD, Xi'an 710077, China
Abstract  To enhance the reverse blocking capability with low specific on-resistance, a novel vertical metal-oxide-semiconductor field-effect transistor (MOSFET) with a Schottky-drian (SD) and SD-connected semisuperjunctions (SD-D-semi-SJ), named as SD-D-semi-SJ MOSFET is proposed and demonstrated by two-dimensional (2D) numerical simulations. The SD contacted with the n-pillar exhibits the Schottky-contact property, and that with the p-pillar the Ohmic-contact property. Based on these features, the SD-D-semi-SJ MOSFET could obviously overcome the great obstacle of the ineffectivity of the conventional superjunctions (SJ) or semisuperjunctions (semi-SJ) for the reverse applications and achieve a satisfactory trade-off between the reverse breakdown voltage (BV) and the specific on-resistance (RonA). For a given pillar width and n-drift thickness, there exists a proper range of n-drift concentration (N), in which the SD-D-semi-SJ MOSFET could exhibit a better trade-off of RonA-BV compared to the predication of SJ MOSFET in the forward applications. And what is much valuable, in this proper range of N, the desired BV and good trade-off could be achieved only by determining the pillar thickness, with the top assist layer thickness unchanged. Detailed analyses have been carried out to get physical insights into the intrinsic mechanism of RonA-BV improvement in SD-D-semi-SJ MOSFET. These results demonstrate a great potential of SD-D-semi-SJ MOSFET in reverse applications.
Keywords:  vertical MOSFET      Schottky-drain-connected semisuperjunction (SD-D-semi-SJ)      reverse blocking      specific on-resistance  
Received:  14 December 2016      Revised:  03 February 2017      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61306017, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 605119425012).
Corresponding Authors:  Xiao-Fei Wang     E-mail:  xjtuwxf@126.com

Cite this article: 

Wei Mao(毛维), Hai-Yong Wang(王海永), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Improvement of reverse blocking performance in vertical power MOSFETs with Schottky-drain-connected semisuperjunctions 2017 Chin. Phys. B 26 047306

[1] Chen X B 1993 U.S. Patent 5 216 275
[2] Fujihira T 1997 Jpn. J. Appl. Phys. 36 6254
[3] Saito W, Omura I, Aida S, Koduki S, Izumisawa M and Ogura T 2003 IEEE Trans. Electron Dev. 50 1801
[4] Srikanth S and Karmalkar S 2008 IEEE Trans. Electron Dev. 55 3562
[5] Ye H and Haldar P 2008 IEEE Trans. Electron Dev. 55 2246
[6] Chen Y, Liang Y C, Samudra G S, Yang X, Buddharaju K D and Feng H H 2008 IEEE Trans. Electron Dev. 55 211
[7] Napoli E, Wang H and Udrea F 2008 IEEE Electron Dev. Lett. 29 249
[8] Tamaki T, Nakazawa Y, Kanai H, Abiko Y, Ikegami Y, Ishikawa M, Wakimoto E, Yasuda T and Eguchi S 2011 Proceedings of the 23rd International Symosium on Power Semiconductor Devices and ICs, May, 2011, San Diego, CA, USA, pp. 308-311
[9] Huang H M and Chen X B 2013 IEEE Trans. Electron Dev. 60 1195
[10] Lyu X J and Chen X B 2013 IEEE Trans. Electron Dev. 60 1709
[11] Lin Z, Huang H M and Chen X B 2015 IEEE Trans. Electron Dev. 62 228
[12] Zhang W T, Zhang B, Li Z H, Qiao M and Li Z J 2015 IEEE Trans. Electron Dev. 62 4114
[13] Murari B, Bertotti F and Vignola G A 2002 Smart Power ICs, 2nd edn. pp. 184-88
[14] Leberer R, Reber R and Oppermann M 2008 IEEE MTT-S International Microwave Symposium Digest, June 15-20, 2008, Atlanta, GA, p. 85
[15] Huang W and Chow T P 2007 Proceedings of the 19th Inernational Symposium on Power Semiconductor Devices and ICs, pp. 265-268
[16] Nagai S, Yamada Y, Negoro N, Handa H, Hiraiwa M, Otsuka N and Ueda D 2015 IEEE Journal of the Electron Devices Society 3 7
[17] Bahat-Treidel E, Lossy R, Wurfl J and Trankle G 2009 IEEE Electron Dev. Lett. 30 901
[18] Zhou C H, Chen W, Piner E L and Chen K J 2010 IEEE Electron Dev. Lett. 31 668
[19] Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303
[20] Atlas User's Manual 2015, Silvaco, Inc., Santa Clara, CA USA
[21] Hu C 1979 IEEE Trans. Electron Dev. 26 243
[1] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[2] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[3] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[4] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[5] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[6] Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(4): 047305.
[7] Closed-form breakdown voltage/specific on-resistance model using charge superposition technique for vertical power double-diffused metal-oxide-semiconductor device with high-κ insulator
Xue Chen(陈雪), Zhi-Gang Wang(汪志刚), Xi Wang(王喜), James B Kuo. Chin. Phys. B, 2018, 27(4): 048502.
[8] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[9] Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer
Da Ma(马达), Xiao-Rong Luo(罗小蓉), Jie Wei(魏杰), Qiao Tan(谭桥), Kun Zhou(周坤), Jun-Feng Wu(吴俊峰). Chin. Phys. B, 2016, 25(4): 048502.
[10] A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology
Yan-Hui Zhang(张彦辉), Jie Wei(魏杰), Chao Yin(尹超), Qiao Tan(谭桥), Jian-Ping Liu(刘建平), Peng-Cheng Li(李鹏程), Xiao-Rong Luo(罗小蓉). Chin. Phys. B, 2016, 25(2): 027306.
[11] An ultra-low specific on-resistance trench LDMOS with a U-shaped gate and accumulation layer
Li Peng-Cheng (李鹏程), Luo Xiao-Rong (罗小蓉), Luo Yin-Chun (罗尹春), Zhou Kun (周坤), Shi Xian-Long (石先龙), Zhang Yan-Hui (张彦辉), Lv Meng-Shan (吕孟山). Chin. Phys. B, 2015, 24(4): 047304.
[12] Reverse blocking enhancement of drain field plate in Schottky-drain AlGaN/GaN high-electron mobility transistors
Zhao Sheng-Lei (赵胜雷), Wang Yuan (王媛), Yang Xiao-Lei (杨晓蕾), Lin Zhi-Yu (林志宇), Wang Chong (王冲), Zhang Jin-Cheng (张进成), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097305.
[13] A low specific on-resistance SOI LDMOS with a novel junction field plate
Luo Yin-Chun (罗尹春), Luo Xiao-Rong (罗小蓉), Hu Gang-Yi (胡刚毅), Fan Yuan-Hang (范远航), Li Peng-Cheng (李鹏程), Wei Jie (魏杰), Tan Qiao (谭桥), Zhang Bo (张波). Chin. Phys. B, 2014, 23(7): 077306.
[14] A novel LDMOS with a junction field plate and a partial N-buried layer
Shi Xian-Long (石先龙), Luo Xiao-Rong (罗小蓉), Wei Jie (魏杰), Tan Qiao (谭桥), Liu Jian-Ping (刘建平), Xu Qing (徐青), Li Peng-Cheng (李鹏程), Tian Rui-Chao (田瑞超), Ma Da (马达). Chin. Phys. B, 2014, 23(12): 127303.
[15] Mechanism of improving forward and reverse blocking voltages in AlGaN/GaN HEMTs by using Schottky drain
Zhao Sheng-Lei (赵胜雷), Mi Min-Han (宓珉瀚), Hou Bin (侯斌), Luo Jun (罗俊), Wang Yi (王毅), Dai Yang (戴杨), Zhang Jin-Cheng (张进成), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(10): 107303.
No Suggested Reading articles found!