Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047305    DOI: 10.1088/1674-1056/26/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates

Hui Wang(王辉)1,2, Ning Wang(王宁)1,2, Ling-Li Jiang(蒋苓利)1,2, Xin-Peng Lin(林新鹏)1,2, Hai-Yue Zhao(赵海月)1,2, Hong-Yu Yu(于洪宇)1,2
1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 Shenzhen Key Laborary of the Third Generation Semiconductor, Shenzhen 518055, China
Abstract  A novel enhancement-mode AlGaN/GaN high electron mobility transistor (HEMT) is proposed and studied. Specifically, several split floating gates (FGs) with negative charges are inserted to the conventional MIS structure. The simulation results revealed that the Vth decreases with the increase of polarization sheet charge density and the tunnel dielectric (between FGs and AlGaN) thickness, while it increases with the increase of FGs sheet charge density and blocking dielectric (between FGs and control gate) thickness. In the case of the same gate length, the Vth will left shift with decreasing FG length. More interestingly, the split FGs could significantly reduce the device failure probability in comparison with the single large area FG structure.
Keywords:  AlGaN/GaN      high electron mobility transistor      split floating gates      enhancement mode  
Received:  01 November 2016      Revised:  08 January 2017      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.Ea (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by "Efficient and Energy-Saving GaN on Si Power Devices" Research Fund (Grant No. KQCX20140522151322946), the Research Fund of the Third Generation Semiconductor Key Laboratory of Shenzhen, China (Grant No. ZDSYS20140509142721434), the "Key Technology Research of GaN on Si Power Devices" Research Fund (Grant No. JSGG20140729145956266), and the "Research of Low Cost Fabrication of GaN Power Devices and System Integration" Research Fund (Grant No. JCYJ201602261926390).
Corresponding Authors:  Hong-Yu Yu     E-mail:  yuhy@sustc.edu.cn

Cite this article: 

Hui Wang(王辉), Ning Wang(王宁), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Hai-Yue Zhao(赵海月), Hong-Yu Yu(于洪宇) A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates 2017 Chin. Phys. B 26 047305

[1] Luo J, Zhao S L, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H and Hao Y 2016 Chin. Phys. B 25 027303
[2] Chen K J and Zhou C 2011 Phys. Stat. Soli. 208 434
[3] Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron. Dev. 53 2207
[4] Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W and Ma X H 2015 Chin. Phys. B 24 017303
[5] Chang C, Pearton S, Lo C, Ren F, Kravchenko I, Dabiran A, Wowchak A, Cui B and Chow P 2009 Appl. Phys. Lett. 94 263505
[6] Hilt O, Brunner F, Cho E, Knauer A, Bahat-Treidel E and Würfl J 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2011, IEEE, p. 239
[7] Lanford W, Tanaka T, Otoki Y and Adesida I 2005 Electron. Lett. 41 449
[8] Ma X H, Pan C Y, Yang L Y, Yu H Y, Yang L, Quan S, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027304
[9] Ma X H, Yu H Y, Quan S, Yang L Y, Pan C Y, Yang L, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027303
[10] Ota K, Endo K, Okamoto Y, Ando Y, Miyamoto H and Shimawaki H 2009 IEEE International Electron Devices Meeting (IEDM), 2009, IEEE p. 1
[11] Lee B, Kirkpatrick C, Yang X, Jayanti S, Suri R, Roberts J and Misra V 2010 IEEE International Electron Devices Meeting (IEDM), 2010, IEEE 20.6. 1
[12] Kirkpatrick C, Lee B, Choi Y, Huang A and Misra V 2012 Phys. Stat. Soli. 9 864
[13] Huang H, Liang Y C, Samudra G S and Huang C F 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 2013, IEEE p. 555
[14] Zhang Y, Sun M, Joglekar S J, Fujishima T and Palacios T 2013 Appl. Phys. Lett. 103 033524
[15] Pavan P, Bez R, Olivo P and Zanoni E 1997 Proc. IEEE 85 1248
[16] Ťapajna M and Kuzmík J 2012 Appl. Phys. Lett. 100 113509
[17] Awano Y, Kosugi M, Kosemura K, Mimura T and Abe M 1989 IEEE Trans. Electron. Dev. 36 2260
[18] Strong A W, Wu E Y, Vollertsen R P, Sune J, La Rosa G, Sullivan T D and Rauch S E III 2009 Reliability Wearout Mechanism in Advanced CMOS Technology, Vol. 12 (New Jersey: John Wiley & Sons)
[19] Belgal H P, Righos N, Kalastirsky I, Peterson J J, Shiner R and Mielke N 2002 40th Annual Reliability Physics Symposium Proceedings, 2002, IEEE p. 7
[20] Bez R, Camerlenghi E, Modelli A and Visconti A 2003 Proc. IEEE 91 489
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[11] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[12] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[13] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[14] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[15] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
No Suggested Reading articles found!