Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046401    DOI: 10.1088/1674-1056/26/4/046401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High pressure electrical transport behavior in SrF2 nanoplates

Xiao-Yan Cui(崔晓岩)1, Ting-Jing Hu(胡廷静)1, Jing-Shu Wang(王婧姝)1, Jun-Kai Zhang(张俊凯)1, Xue-Fei Li(李雪飞)1, Jing-Hai Yang(杨景海)1, Chun-Xiao Gao(高春晓)2
1 Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  The charge transport behavior of strontium fluoride nanocrystals has been investigated by in situ impedance measurement up to 35 GPa. It was found that the parameters changed discontinuously at each phase transition. The charge carriers in SrF2 nanocrystals include both F- ions and electrons. In the Fm3m phase, pressure makes the electronic transport easier, while makes it more difficult in the Pnma phase. The defects at grain boundaries dominate the electronic transport process. Pressure could make the charge-discharge processes in the Fm3m phase much easier, but make it more difficult in the Pnma phase.
Keywords:  electrical properties      phase transitions      transport properties  
Received:  19 December 2016      Revised:  17 January 2017      Accepted manuscript online: 
PACS:  64.60.-i (General studies of phase transitions)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374131, 11674404, 11404137, and 61378085), the Program for New Century Excellent Talents in University, China (Grant No. NCET-13-0824), the Program for the Development of Science and Technology of Jilin Province, China (Grant Nos. 201201079 and 20150204085GX), and the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 20150221).
Corresponding Authors:  Ting-Jing Hu, Chun-Xiao Gao     E-mail:  tjhumars@126.com;cc060109@qq.com

Cite this article: 

Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓) High pressure electrical transport behavior in SrF2 nanoplates 2017 Chin. Phys. B 26 046401

[1] Sun S, Weiss S and Alivisatos A P 1998 Science 281 2013
[2] Moser A, Takano K, Margulies D T, Albrecht M, Sonobe Y, Ikeda Y, Sun S and Fullerton E E 2002 J. Phys. D: Appl. Phys. 35 R157
[3] Ambashta R D, Yusuf S M, Mukadam M D, Singh S, Wattal P K and Bahadur D 2005 J. Magn. Magn. Mater. 293 8
[4] Rudge S R, Kurtz T L, Vessely C R, Catterall L G and Williamson D L 2000 Biomaterials 21 1411
[5] Feldmann C, Roming M and Trampert K 2006 Small 2 1248
[6] Quan Z W, Yang D M, Yang P P, Zhang X M, Lian H Z, Liu X M and Lin J 2008 Inorg. Chem. 47 9509
[7] Gao P, Xie Y and Li Z 2006 Eur. J. Inorg. Chem. 16 3261
[8] Mao Y B, Zhang F and Wong S S 2006 Adv. Mater. 18 1895
[9] Wang W S, Zhen L, Xu C Y, Chen J Z and Shao W Z 2009 Appl. Mater. Interfaces 1 780
[10] Singh R, Sinha S, Chou P, Hsu N J and Radpour F 1989 J. Appl. Phys. 66 6179
[11] Pratt J N 1990 Metall. Trans. 21A 1223
[12] Chandra S 1981 Superionic Solids. Principles and Application (New York: Oxford) pp. 313-370
[13] Laskar A L and Chandra S 1989 Superionic Solids and Solid Electrolytes (New York: Academic Press) pp. 339-379
[14] Prin W and Heitjans P 1995 Nanostruct. Mater. 6 885
[15] Hu T J, Cui X Y, Gao Y, Han Y H, Liu C L, Liu B, Liu H W, Ma Y Z and Gao C X 2010 Rev. Sci. Instrum. 81 115101
[16] Cui X Y, Hu T J, Han Y H, Gao C X, Peng G, Liu C L, Wu B J, Wang Y, Liu B, Ren W B, Li Y, Su N N, Zou G T, Du F and Chen G 2010 Chin. Phys. Lett. 27 036402
[17] Hu T J, Cui X Y, Li X F, Wang J S, Yang J H and Gao C X 2015 Chin. Phys. Lett. 32 016402
[18] Hu T J, Cui X Y, Li X F, Wang J S, Lv X M, Wang L S, Yang J H and Gao C X 2015 Chin. Phys. B 24 116401
[19] Wang J S, Zhu H Y, Ma C L, Wu X X, Zhang J, Li D M, Cong R D, Liu J and Cui Q L 2013 J. Phys. Chem. C 117 615
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[6] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[7] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[8] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[9] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[10] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[11] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[12] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[13] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[14] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[15] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
No Suggested Reading articles found!