|
|
Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate |
Sheng-Hui Zhao(赵生辉)1, Wang-Hao Tian(田王昊)2, Xue-Lian Liang(梁雪连)1, Ze He(何泽)1, Pei Wang(王培)3, Lu Ji(季鲁)1,4,†, Ming He(何明)1, and Hua-Bing Wang(王华兵)2,‡ |
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China; 2 Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China; 3 Beijing Institute of Radio Measurement, Beijing 100854, China; 4 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China |
|
|
Abstract Tl-based superconducting devices have been drawn much attention for their high transition temperature (Tc), which allow the high temperature superconductors (HTS) devices to operate at temperature near 100 K. The realization of Tl-based devices will promote the research and application of HTS devices. In this work, we present transport properties of Tl2Ba2CaCu2O8 (Tl-2212) microbridges across a low-angle step on LaAlO3 (LAO) substrate. We experimentally demonstrate intrinsic Josephson effects (IJEs) in Tl-2212 films by tailoring the geometry, i.e., reducing the width of the microbridges. In the case of a 1 μm width microbridge, in addition to the observation of voltage branches and remarkable hysteresis on the current-voltage (I-V) characteristics, the temperature dependence of differential resistance shows a finite resistance above 60 K when the bias current is below the critical current. For comparison, the wider microbridges are also investigated, exhibiting a highly critical current but do not showing obvious IJEs.
|
Received: 27 January 2021
Revised: 25 February 2021
Accepted manuscript online: 05 March 2021
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
74.25.F-
|
(Transport properties)
|
|
Corresponding Authors:
Lu Ji, Hua-Bing Wang
E-mail: luji@nankai.edu.cn;hbwang@nju.edu.cn
|
Cite this article:
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵) Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate 2021 Chin. Phys. B 30 060308
|
[1] Kleiner R 1997 J. Low. Temp. Phys. 106 453 [2] Kleiner R and Wang H B 2019 Fundamentals and Frontiers of the Josephson Effect, Tafuri F ed. (Cham: Springer International Publishing) pp. 367-454 [3] Kleiner R and Muller P 1994 Phys. Rev. B 49 1327 [4] Rudau F, Tsujimoto M, Gross B, Judd T E, Wieland R, Goldobin E, Kinev N, Yuan J, Huang Y, Ji M, Zhou X J, An D Y, Ishii A, Mints R G, Wu P H, Hatano T, Wang H B, Koshelets V P, Koelle D and Kleiner R 2015 Phys. Rev. B 91 104513 [5] Rudau F, Wieland R, Langer J, Zhou X J, Ji M, Kinev N, Hao L Y, Huang Y, Li J, Wu P H, Hatano T, Koshelets V P, Wang H B, Koelle D and Kleiner R 2016 Phys. Rev. Appl. 5 044017 [6] Liu F, Lin S Z and Hu X 2013 Supercond. Sci. Technol. 26 025003 [7] Borodianskyi E A and Krasnov V M 2017 Nat. Commun. 8 1742 [8] Zhang H L, Wieland R and Chen W, et al. 2019 Phys. Rev. Appl. 11 044004 [9] Elarabi A, Yoshioka Y, Tsujimoto M and Kakeya I 2017 Phys. Rev. Appl. 8 064034 [10] Tsujimoto M, Doi T, Kuwano G, Elarabi A and Kakeya I 2017 Supercond. Sci. Technol. 30 064001 [11] Wang H B, Guenon S, Gross B, Yuan J, Jiang Z G, Zhong Y Y, Grunzweig M, Iishi A, Wu P H, Hatano T, Koelle D and Kleiner R 2010 Phys. Rev. Lett. 105 057002 [12] Wang H B, Guenon S, Yuan J, Iishi A, Arisawa S, Hatano T, Yamashita T, Koelle D and Kleiner R 2009 Phys. Rev. Lett. 102 017006 [13] Uchida T, Kimura W, Nakajima K, Tachiki T and Uchida T 2018 IEEE Trans. Appl. Supercond. 28 1 [14] Kashiwagi T, Yuasa T, Tanabe Y, Imai T, Kuwano G, Ota R, Nakamura K, Ono Y, Kaneko Y, Tsujimoto M, Minami H, Yamamoto T, Klemm R A and Kadowaki K 2018 J. Appl. Phys. 124 033901 [15] Zhao S H, Tian W H, Zhang X, Liang X L, He Z, Qi Z D, Wang P, Ji L, He M and Wang H B 2020 Supercond. Sci. Technol. 33 075006 [16] Chana O S, Kuzhakhmetov A R, Warburton P A, Hyland D M C, Dew-Hughes D, Grovenor C R M, Kinsey R J, Burnell G, Booij W E, Blamire M G, Kleiner R and Müller P 2000 Appl. Phys. Lett. 76 3603 [17] Yan S I, Fang L, Si M S and Wang J 1997 J. Appl. Phys. 82 480 [18] Chana O S, Hyland D M C, Kinsey R J, Booij W E, Blamire M G, Grovenor C R M, Dew-Hughes D and Warburton P A 1999 Physica C 326-327 104 [19] Mans M, Schneidewind H, Büenfeld M, Schmidl F and Seidel P 2006 Phys. Rev. B 74 214514 [20] Wang P, Fan B, Wang Z, Xie W, Zhao X J, Zhang X, Ji L, He M, Fang L and Yan S L 2012 J. Supercond. Nov. Magn. 25 1427 [21] Wang P, Xie W, Hu L, Liu X, Zhao X J, He M, Ji L, Zhang X and Yan S L 2013 Chin. Phys. B 22 57402 [22] Hu L, Wang P, Xie W, Liu X, Zhao X J, He M, Ji L, Zhang X and Yan S L 2014 J. Supercond. Nov. Magn. 27 353 [23] Warburton P A, Kuzhakhmetov A R, Burnell G, Blamire M G and Schneidewind H 2003 Phys. Rev. B 67 184513 [24] Warburton P A, Kuzhakhmetov A R, Burnell G, Blamire M G, Koval Y, Franz A, Muller P and Schneidewind H 2005 IEEE Trans. Appl. Supercond. 15 237 [25] Chana O S, Kuzhakhmetov A R, Hyland D M C, Dew-Hughes D, Grovenor C R M, Koval Y, Kleiner R, Müller P and Warburton P A 2001 Physica C 362 265 [26] Warburton P A, Chana O S, Kuzhakhmetov A R, Hyland D M C, Dew-Hughes D, Grovenor C R M, Koval Y and Muller P 2001 IEEE Trans. Appl. Supercond. 11 300 [27] Warburton P A, Kuzhakhmetov A R, Chana O S, Burnell G, Blamire M G, Schneidewind H, Koval Y, Franz A, Müller P, Hyland D M C, Dew-Hughes D, Wu H and Grovenor C R M 2004 J. Appl. Phys. 95 4941 [28] Warburton P A 2007 Supercond. Sci. Technol. 20 S14 [29] Wang H B, Chen J, Tachiki T, Mizugaki Y, Nakajima K and Yamashita T 1999 J. Appl. Phys. 85 3740 [30] Wang H B, Chen J, Nakajima K, Yamashita T, Wu P H, Nishizaki T, Shibata K and Kobayashi N 2000 Phys. Rev. B 61 R14948 [31] Veith M, Eick T, Brodkorb W, Manzel M, Bruchlos H, Köhler T, Schmidt H G, Steinbeiss E, Fuchs H J, Schlenga K, Hechtfischer G and Müller P 1996 J. Appl. Phys. 80 3396 [32] Schlenga K, Kleiner R, Hechtfischer G, Mossle M, Schmitt S, Muller P, Helm C, Preis C, Forsthofer F, Keller J, Johnson H L, Veith M and Steinbeiss E 1998 Phys. Rev. B 57 14518 [33] Yoshikawa S, Nemoto M, Shimaoka K, Niki K, Yoshida I and Yoshisato Y 1997 IEEE Trans. Appl. Supercond. 7 3013 [34] Yoshikawa S, Nemoto M, Shimaoka K, Yoshida I and Yoshisato Y 1997 Physica C 293 44 [35] Xu T D, Xing J, Wang L T, Zhang J L, Zhao S H, Xiong Y, Zhao X J, Ji L, Zhang X and He M 2018 Chin. Phys. B 27 057403 [36] Ji L, Liang X L, He K Y, Xing J, Xue T, Xu T D, Wang L T, Zhang S F, Zhang X, He Z, He M, Zeng C, Yan S L and Feng M 2019 Ceram. Int. 45 24635 [37] Oya G, Hashimoto T and Irie A 2006 Supercond. Sci. Technol. 19 S191 [38] Latyshev Y I, Gaifullin M B, Yamashita T, Machida M and Matsuda Y 2001 Phys. Rev. Lett. 87 247007 [39] Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C and Dynes R C 2015 Nat. Nanotech. 10 598 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|