Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046402    DOI: 10.1088/1674-1056/26/4/046402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low-temperature phase transformation of CZTS thin films

Wei Zhao(赵蔚)1,2, Lin-Yuan Du(杜霖元)1, Lin-Lin Liu(刘林林)1, Ya-Li Sun(孙亚利)1, Zhi-Wei Liu(柳志伟)1, Xiao-Yun Teng(滕晓云)1, Juan Xie(谢娟)2, Kuang Liu(刘匡)3, Wei Yu(于威)1, Guang-Sheng Fu(傅广生)1, Chao Gao(高超)4
1 Hebei Key Laboratory of Optic-electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China;
2 School of Science, Hebei University of Engineering, Handan 056038, China;
3 School of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
4 Institute of Photovoltaics, Nanchang University, Nanchang 330031, China
Abstract  The low temperature phase transformation in the Cu2ZnSnS4 (CZTS) films was investigated by laser annealing and low temperature thermal annealing. The Raman measurements show that a-high-power laser annealing could cause a red shift of the Raman scattering peaks of the kesterite (KS) structure and promotes the formation of the partially disordered kesterite (PD-KS) structure in the CZTS films, and the low-temperature thermal annealing only shifts the Raman scattering peak of KS phase by several wavenumber to low frequency and the broads Raman peaks in the low frequency region. Moreover, the above two processes were reversible. The Raman analyses of the CZTS samples prepared under different process show that the PD-KS structure tends to be found at low temperatures and low sulfur vapor pressures. Our results reveal that the control of the phase structure in CZTS films is feasible by adjusting the preparation process of the films.
Keywords:  Cu2ZnSnS4 (CZTS) films      magnetron sputtering      phase transformation  
Received:  04 December 2016      Revised:  13 February 2017      Accepted manuscript online: 
PACS:  64.60.-i (General studies of phase transitions)  
  81.15.Cd (Deposition by sputtering)  
  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
Fund: Project supported by the Natural Science Foundation for Youth Fund of Hebei Province, China (Grant No. A2016201087), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131301120003), and the National Natural Science Foundation of China (Grant Nos. 11504078 and 61504054).
Corresponding Authors:  Wei Yu, Guang-Sheng Fu, Chao Gao     E-mail:  yuwei@hbu.edu.cn;fugs@hbu.edu.cn;cgao@ncu.edu.cn

Cite this article: 

Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超) Low-temperature phase transformation of CZTS thin films 2017 Chin. Phys. B 26 046402

[1] Fernandes P A, Salomé P M P and Cunha A F D 2009 Thin Solid Films 517 2519
[2] Chan C P, Lam H and Surya C 2010 Sol. Energy Mater. Sol. Cells 94 207
[3] Friedlmeier T M, Wieser N, Walter T, Dittrich H and Schock H W 1997 Proceedings of the 14th European Photovotlaic Specialists Conference Barcelona, 1997, Spain, p. 1242
[4] Raulot J M, Domain C and Guillemoles J F 2005 Phys. Rev. B 71 035203
[5] Friedlmeier T A M 2001 Fortschritt-Berichte VDI Reihe 9 Nr. 340 122
[6] Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H and Takeuchi A 2009 Thin Solid Films 517 2455
[7] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 403
[8] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2012 Photovolt. Res. Appl. 20 606
[9] Siebentritt S 2013 Thin Solid Films 535 1
[10] Samji S K, Tiwari B, Surendra M K and Rao M R 2014 Appl. Phys. Lett. 104 152106
[11] Walsh A, Chen S, Wei S H and Gong X G 2012 Adv. Energy Mater. 2 400
[12] Siebentritt S and Schorr S 2012 Prog. Photovolt: Res. Appl. 20 512
[13] Valakh M Y, Kolomys O F, Ponomaryov S S, Yukhymchuk V O, BabichukI S, Izquierdo-Roca V, Saucedo E, Perez-Rodriguez A, Morante J R, Schorr S and Bodnar I V 2013 Phys. Status Solidi (RRL) 7 258
[14] Khare A, Himmetoglu B, Johnson M, Norris D J, Matteo C and Eray S A 2012 Appl. Phys. 111 083707
[15] Schorr S 2011 Sol. Energy Mater. Solar Cells 95 1482
[16] Siebentritt S and Schorr S 2012 Prog. Photovolt: Res. Appl. 20 512
[17] Schorr S and Gonzalez-Aviles G 2009 Phys. Status Solidi 206 1054
[18] Jonathan J S S, Leo C, Alain L, Tove E and Charlotte P B 2014 Appl. Phys. Lett. 104 041911
[19] Valakh M Y, Dzhagan V M, Babichuk I S, Fontane X, PerezRodriquez A and Schorr S 2013 JETP Lett. 98 255
[20] Wang W, Shen H L, Jin J L, Li J Z and Ma Y 2015 Chin. Phys. B 24 056805
[21] Himmrich M and Haeuseler H 1991 Spectrochim. Acta 47 933
[22] Aroyo M I, Perez-Mato J M, Capillas C, Kroumova E, Ivantchev S, Madariaga G, Kirov A and Wondratschek H 2006 Z. Kristallogr 221 15
[23] Fernandese P A, Salome P M. P and Cunha A F D 2009 Thin Solid Films 517 2519
[24] Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J and Mellikov E 2008 Phys. Status Solidi A 205 167
[25] Ankur K, Burak H, Melissa J, David J N, Matteo C and Eray S A 2012 J. Appl. Phys. 111 083707
[26] Su D S, Neumann W and Giersig M 2000 Thin Solid Films 361-362 218
[27] Dimitrievska M, Fairbrother A, Fontane X, Jawhari T, Izquierdo-Roca V, Saucedo E and Pérez-Rodríguez A 2014 Appl. Phys. Lett. 104 02190
[28] Grossberg M, Krustok J, Raudoja J and Raadik T 2012 Appl. Phys. Lett. 101 102102
[29] Schorr S 2011 Sol. Energy Mater. Sol. Cells 95 1482
[30] Schorr S, Hoebler H J and Tovar M 2007 Eur. J. Mineral 19 65
[31] Yang H, Jauregui L A, Zhang G, Chen Y P and Wu Y 2012 Nano Lett. 12 540
[32] Sarswat P K, Free M L and Ashutosh T 2011 Phys. Status Solidi 248 2170
[1] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[5] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[6] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[7] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[8] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[9] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[10] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[11] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[12] High-pressure-induced phase transition in cinchomeronic acid polycrystalline form-I
Ting-Ting Yan(颜婷婷), Dong-Yang Xi(喜冬阳), Jun-Hai Wang(王俊海), Xu-Feng Fan(樊旭峰), Ye Wan(万晔), Li-Xiu Zhang(张丽秀), Kai Wang(王凯). Chin. Phys. B, 2019, 28(1): 016104.
[13] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[14] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[15] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
No Suggested Reading articles found!