1 Hebei Key Laboratory of Optic-electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China; 2 School of Science, Hebei University of Engineering, Handan 056038, China; 3 School of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China; 4 Institute of Photovoltaics, Nanchang University, Nanchang 330031, China
Abstract The low temperature phase transformation in the Cu2ZnSnS4 (CZTS) films was investigated by laser annealing and low temperature thermal annealing. The Raman measurements show that a-high-power laser annealing could cause a red shift of the Raman scattering peaks of the kesterite (KS) structure and promotes the formation of the partially disordered kesterite (PD-KS) structure in the CZTS films, and the low-temperature thermal annealing only shifts the Raman scattering peak of KS phase by several wavenumber to low frequency and the broads Raman peaks in the low frequency region. Moreover, the above two processes were reversible. The Raman analyses of the CZTS samples prepared under different process show that the PD-KS structure tends to be found at low temperatures and low sulfur vapor pressures. Our results reveal that the control of the phase structure in CZTS films is feasible by adjusting the preparation process of the films.
Fund: Project supported by the Natural Science Foundation for Youth Fund of Hebei Province, China (Grant No. A2016201087), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131301120003), and the National Natural Science Foundation of China (Grant Nos. 11504078 and 61504054).
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超) Low-temperature phase transformation of CZTS thin films 2017 Chin. Phys. B 26 046402
[1]
Fernandes P A, Salomé P M P and Cunha A F D 2009 Thin Solid Films 517 2519
[2]
Chan C P, Lam H and Surya C 2010 Sol. Energy Mater. Sol. Cells 94 207
[3]
Friedlmeier T M, Wieser N, Walter T, Dittrich H and Schock H W 1997 Proceedings of the 14th European Photovotlaic Specialists Conference Barcelona, 1997, Spain, p. 1242
[4]
Raulot J M, Domain C and Guillemoles J F 2005 Phys. Rev. B 71 035203
[5]
Friedlmeier T A M 2001 Fortschritt-Berichte VDI Reihe 9 Nr. 340 122
[6]
Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H and Takeuchi A 2009 Thin Solid Films 517 2455
[7]
Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 403
[8]
Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2012 Photovolt. Res. Appl. 20 606
[9]
Siebentritt S 2013 Thin Solid Films 535 1
[10]
Samji S K, Tiwari B, Surendra M K and Rao M R 2014 Appl. Phys. Lett. 104 152106
[11]
Walsh A, Chen S, Wei S H and Gong X G 2012 Adv. Energy Mater. 2 400
[12]
Siebentritt S and Schorr S 2012 Prog. Photovolt: Res. Appl. 20 512
[13]
Valakh M Y, Kolomys O F, Ponomaryov S S, Yukhymchuk V O, BabichukI S, Izquierdo-Roca V, Saucedo E, Perez-Rodriguez A, Morante J R, Schorr S and Bodnar I V 2013 Phys. Status Solidi (RRL) 7 258
[14]
Khare A, Himmetoglu B, Johnson M, Norris D J, Matteo C and Eray S A 2012 Appl. Phys. 111 083707
[15]
Schorr S 2011 Sol. Energy Mater. Solar Cells 95 1482
[16]
Siebentritt S and Schorr S 2012 Prog. Photovolt: Res. Appl. 20 512
[17]
Schorr S and Gonzalez-Aviles G 2009 Phys. Status Solidi 206 1054
[18]
Jonathan J S S, Leo C, Alain L, Tove E and Charlotte P B 2014 Appl. Phys. Lett. 104 041911
[19]
Valakh M Y, Dzhagan V M, Babichuk I S, Fontane X, PerezRodriquez A and Schorr S 2013 JETP Lett. 98 255
[20]
Wang W, Shen H L, Jin J L, Li J Z and Ma Y 2015 Chin. Phys. B 24 056805
[21]
Himmrich M and Haeuseler H 1991 Spectrochim. Acta 47 933
[22]
Aroyo M I, Perez-Mato J M, Capillas C, Kroumova E, Ivantchev S, Madariaga G, Kirov A and Wondratschek H 2006 Z. Kristallogr 221 15
[23]
Fernandese P A, Salome P M. P and Cunha A F D 2009 Thin Solid Films 517 2519
[24]
Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J and Mellikov E 2008 Phys. Status Solidi A 205 167
[25]
Ankur K, Burak H, Melissa J, David J N, Matteo C and Eray S A 2012 J. Appl. Phys. 111 083707
[26]
Su D S, Neumann W and Giersig M 2000 Thin Solid Films 361-362 218
[27]
Dimitrievska M, Fairbrother A, Fontane X, Jawhari T, Izquierdo-Roca V, Saucedo E and Pérez-Rodríguez A 2014 Appl. Phys. Lett. 104 02190
[28]
Grossberg M, Krustok J, Raudoja J and Raadik T 2012 Appl. Phys. Lett. 101 102102
[29]
Schorr S 2011 Sol. Energy Mater. Sol. Cells 95 1482
[30]
Schorr S, Hoebler H J and Tovar M 2007 Eur. J. Mineral 19 65
[31]
Yang H, Jauregui L A, Zhang G, Chen Y P and Wu Y 2012 Nano Lett. 12 540
[32]
Sarswat P K, Free M L and Ashutosh T 2011 Phys. Status Solidi 248 2170
Effects of preparation parameters on growth and properties of β-Ga2O3 film Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.