Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046302    DOI: 10.1088/1674-1056/26/4/046302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory

You Yu(虞游)1, Yu-Jing Dong(董玉静)2, Yan-Hong Shen(沈艳红)1, Guo-Dong Zhao(赵国栋)1, Xiao-Lin Zheng(郑小林)1, Jia-Nan Sheng(盛佳南)1
1 College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China;
2 School of Science and Technology, Xinyang University, Xinyang 464000, China
Abstract  We present a first-principles study of the structural, dielectric, and lattice dynamical properties for chalcopyrite semiconductor ZnSnP2. The structural properties are calculated using a plane-wave pseudopotential method of density-functional theory. A linear response theory is used to derive Born effective charge tensors for each atom, dielectric constants in low and high frequency limits, and phonon frequencies. We calculate all zone-center phonon modes, identify Raman and infrared active modes, and report LO-TO splitting of the infrared modes. The results show an excellent agreement with experiment and propose several predictive behaviors.
Keywords:  phonon      Born effective charge      dielectric permittivity      linear response theory  
Received:  10 December 2016      Revised:  20 January 2017      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  63.20.-e (Phonons in crystal lattices)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
Fund: Project supported by the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (Grant No. JSWL2014KFZ01), the Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 16ZB0209), the Scientific Research Foundation of Chengdu University of Information Technology, China (Grant No. J201611), and the National Natural Science Foundation of China (Grant No. 11547224).
Corresponding Authors:  You Yu     E-mail:  yy2012@cuit.edu.cn

Cite this article: 

You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南) Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory 2017 Chin. Phys. B 26 046302

[1] Folmer J C W, Tuttle J R, Tu J A and Parkinson B A 1985 J. Electrochem. Soc. 132 1608
[2] St-Jean P, Seryogin G A and Francoeur S 2010 Appl. Phys. Lett. 96 231913
[3] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[4] Rubenstein M and Ure R W 1968 J. Phys. Chem. Solids 29 551
[5] Vaipolin A A, Goryunova N A, Kleshchinskii L I, Loshakova G V and Osmanov E O 1968 Phys. Status Solidi B 29 435
[6] Zlatkin L B, Markov Yu F, Stekhanov A I and Shur M S 1969 Phys. Stat. Solidi 32 473
[7] Mintairov A M, Sadchikov N A, Sauncy T and Holtz M 1999 Phys. Rev. B 59 15197
[8] Lazewski J and Parlinski K 2001 J. Alloys Compd. 328 162
[9] Ohrendorf F W and Haeuseler H 1999 Cryst. Res. Technol. 34 339
[10] Bettini M 1975 Phys. Stat. Solidi 69 201
[11] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[12] Kunc K and Martin R M 1982 Phys. Rev. Lett. 48 406
[13] Giannozzi P, Gironcoli S de, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
[14] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[15] Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
[16] Baroni S, Gironcoli S de, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[17] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G-M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y and Allan D C 2002 Comput. Mater. Sci. 25 478
[18] Goedecker S 1997 SIAM J. Sci. Comput. 18 1605
[19] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[20] Gonze X 1996 Phys. Rev. B 54 4383
[21] Fuchs M, and Scheffler M 1999 Comput. Phys. Commun. 119 67
[22] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[23] Gonze X 1997 Phys. Rev. B 55 10337
[24] Hamann D R, Wu X, Rabe K M and Vanderbilt D 2005 Phys. Rev. B 71 035117
[25] Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882
[26] Hinuma Y, Oba F, Nose Y and Tanaka I 2013 J. Appl. Phys. 114 043718
[27] Sahin S, Ciftci Y O, Colakoglu K and Korozlu N 2012 J. Alloys Compd. 529 1
[28] Shaposhnikov V L, Krivosheeva A V and Borisenko V E 2012 Phys. Rev. B 85 205201
[29] Parlak C and Eryigit R 2006 Phys. Rev. B 73 245217
[30] Lazewski J, Jochym P T and Parlinski K 2002 J. Chem. Phys. 117 2726
[31] Akdogan M and Eryigit R 2002 J. Phys.: Condens. Matter 14 7493
[32] Yu Y, Zhao B J, Zhu S F, Gao T and Hou H J 2011 Solid State Sci. 13 422
[33] Kaminow I P, Buehler E and Wernick J H 1970 Phys. Rev. B 2 960
[34] Martin R M and Ortiz G 1997 Phys. Rev. B 56 1124
[35] Verma A S and Bhardwaj S R 2006 Phys. Stat. Solidi 243 2858
[36] Chiker F, Abbar B, Bresson S, Khelifa B, Mathieu C and Tadjer A 2004 J. Solid State Chem. 177 3859
[37] Gonze X, Ghosez Ph and Godby R W 1995 Phys. Rev. Lett. 74 4035
[38] Ghosez Ph, Michenaud J P and Gonze X 1998 Phys. Rev. B 58 6224
[39] Penn D R 1962 Phys. Rev. 128 2093
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[5] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[6] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[7] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[8] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[9] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[10] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[11] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[12] Advances of phononics in 2012—2022
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文). Chin. Phys. B, 2022, 31(12): 126301.
[13] Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微). Chin. Phys. B, 2022, 31(12): 127202.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
No Suggested Reading articles found!