Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040302    DOI: 10.1088/1674-1056/26/4/040302
GENERAL Prev   Next  

Experimentally testing Hardy's theorem on nonlocality with entangled mixed states

Dai-He Fan(樊代和)1, Mao-Chun Dai(戴茂春)1, Wei-Jie Guo(郭伟杰)1, Lian-Fu Wei(韦联福)1,2
1 Quantum Optoelectronics Laboratory, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics Science and Engineering, Sun Yet-sen University, Guangzhou 510275, China

Hardy's theorem on nonlocality has been verified by a series of experiments with two-qubit entangled pure states. However, in this paper we demonstrate the experimental test of the theorem by using the two-photon entangled mixed states. We first investigate the generic logic in Hardy's proof of nonlocality, which can be applied for arbitrary two-qubit mixed polarization entangled states and can be reduced naturally to the well-known logic tested successfully by the previous pure state experiments. Then, the optimized violations of locality for various experimental parameters are delivered by the numerical method. Finally, the logic argued above for testing Hardy's theorem on nonlocality is demonstrated experimentally by using the mixed entangled-photon pairs generated via pumping two type-I BBO crystals. Our experimental results shows that Hardy's proof of nonlocality can also be verified with two-qubit polarization entangled mixed states, with a violation of about 3.4 standard deviations.

Keywords:  Hardy'      s theorem      nonlocality      entangled mixed state      spontaneous parametric down conversion (SPDC)  
Received:  25 December 2016      Revised:  09 January 2017      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Xa (Optical tests of quantum theory)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61308008 and U1330201).

Corresponding Authors:  Dai-He Fan     E-mail:

Cite this article: 

Dai-He Fan(樊代和), Mao-Chun Dai(戴茂春), Wei-Jie Guo(郭伟杰), Lian-Fu Wei(韦联福) Experimentally testing Hardy's theorem on nonlocality with entangled mixed states 2017 Chin. Phys. B 26 040302

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bell J S 1964 Physics 1 195
[3] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
[4] Hardy L 1993 Phys. Rev. Lett. 71 1665
[5] Mermin N 1995 Ann. N. Y. Acad. Sci. 755 616
[6] Torgerson J R, Branning D, Monken C H and Mandel L 1995 Phys. Lett. A 204 323
[7] White A G, James D F V, Eberhard P H and Kwiat P G 1999 Phys. Rev. Lett. 83 3103
[8] Chen L and Romero J 2012 Opt. Express 20 21687
[9] Vallone G, Gianani I, Inostroza E B, Saavedra C, Lima G, Cabello A and Mataloni P 2011 Phys. Rev. A 83 042105
[10] Rabelo R, Zhi L Y and Scarani V 2012 Phys. Rev. Lett. 109 180401
[11] Boschi D, Branca S, Martini F D and Hardy L 1997 Phys. Rev. Lett. 79 2755
[12] Hao Y and Wei L F 2013 Quantum Infor. Process. 12 3341
[13] Ghirardi G and Marinatto L 2006 Phys. Rev. A 73 032102
[14] Ghirardi G and Marinatto L 2006 Phys. Rev. A 74 062107
[15] Magde D and Mahr H 1967 Phys. Rev. Lett. 18 905
[16] Werner R F 1989 Phys. Rev. A 40 4277
[17] Zhang Y S, Huang Y F, Li C F and Guo G C 2002 Phys. Rev. A 66 062315
[18] Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
[19] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[20] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. (Cambridge: Cambridge University Press)
[21] Dehlinger D and Mitchell M W 2002 Am. J. Phys. 70 903
[22] Nielsen M A and Chuang I L 2000 Quantum Computation and Information (Cambridge: Cambridge University Press)
[1] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[4] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[5] Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media
Huafeng Zhang(张华峰), Hua Lü(吕华), Jianghua Luo(罗江华), Lihui Sun(孙利辉). Chin. Phys. B, 2016, 25(8): 084210.
[6] Quantum nonlocality of generic family of four-qubit entangled pure states
Ding Dong (丁东), He Ying-Qiu (何英秋), Yan Feng-Li (闫凤利), Gao Ting (高亭). Chin. Phys. B, 2015, 24(7): 070301.
[7] A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors
Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small. Chin. Phys. B, 2015, 24(6): 060507.
[8] Measurement-induced nonlocality in the W and Greenberger-Horne-Zeilinger superposition states
Lin Qin (林秦), Bai Yan-Kui (白彦魁), Ye Ming-Yong (叶明勇), Lin Xiu-Min (林秀敏). Chin. Phys. B, 2015, 24(3): 030304.
[9] Energy dependence on the electric activities of a neuron
Song Xin-Lin (宋欣林), Jin Wu-Yin (靳伍银), Ma Jun (马军). Chin. Phys. B, 2015, 24(12): 128710.
[10] Transversal reverse transformation of anomalous hollow beams in strongly isotropic nonlocal media
Dai Zhi-Ping (戴志平), Yang Zhen-Jun (杨振军), Zhang Shu-Min (张书敏), Pang Zhao-Guang (庞兆广), You Kai-Ming (游开明). Chin. Phys. B, 2014, 23(7): 074208.
[11] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[12] Spatially nonlocal effects on optical absorption properties incoupled quantum wells with an applied electric field
Wang Chao-Yang (王晁阳), Wang Guang-Hui (王光辉). Chin. Phys. B, 2014, 23(12): 127103.
[13] Noether's theorem for non-conservative Hamilton system based on El-Nabulsi dynamical model extended by periodic laws
Long Zi-Xuan (龙梓轩), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(11): 114501.
[14] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[15] Quantum discord dynamics of two qubits in the single-mode cavities
Wang Chen (王晨), Chen Qing-Hu (陈庆虎). Chin. Phys. B, 2013, 22(4): 040304.
No Suggested Reading articles found!