Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037307    DOI: 10.1088/1674-1056/26/3/037307
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices

Xuefei Li(李学飞)1, Xiong Xiong(熊雄)2, Yanqing Wu(吴燕庆)1,2
1 Wuhan National High Magnetic Field Center and School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

Recently, black phosphorus (BP) has joined the two-dimensional material family as a promising candidate for electronic and photonic applications due to its moderate bandgap, high carrier mobility, and unusual in-plane anisotropy. Here, we review recent progress in BP-based devices, such as field-effect transistors, contact resistance, quantum transport, stability, photodetector, heterostructure, and in-plane anisotropy. We also give our perspectives on future BP research directions.

Keywords:  black phosphorus      transistors      mobility      photodetector  
Received:  05 January 2017      Revised:  13 February 2017      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.30.-z (Semiconductor devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11404118, 61574066, and 61390504).

Corresponding Authors:  Yanqing Wu     E-mail:  yqwu@hust.edu.cn

Cite this article: 

Xuefei Li(李学飞), Xiong Xiong(熊雄), Yanqing Wu(吴燕庆) Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices 2017 Chin. Phys. B 26 037307

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Grigorieva I V 2013 Nature 499 419
[3] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A 2015 Proceedings of the National Academy of Sciences of the United States of America 102 10451
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[5] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[6] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[7] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[8] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[9] Yoon Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
[10] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[11] Schwierz F 2010 Nat. Nanotechnol. 5 487
[12] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[13] Liu H, Neal A T and Ye P D 2012 ACS Nano 6 8563
[14] Zhu W, Low T, Lee Y H, Wang H, Farmer D B, Kong J, Xia F and Avouris P 2014 Nat. Commun. 5 3087
[15] Li X, Yang L, Si M, Li S, Huang M, Ye P and Wu Y 2015 Adv. Mater. 27 1547
[16] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
[17] Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 5143
[18] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[19] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899
[20] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
[21] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[22] Du Y, Yang L, Liu H and Peide D Y 2014 APL Mater. 2 092510
[23] Morita A 1986 Appl. Phys. A 39 227
[24] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[25] Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proceedings of the National Academy of Sciences 112 4523
[26] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517
[27] Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
[28] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[29] Yau S L, Moffat T P, Bard A J, Zhang Z and Lerner M M 1992 Chem. Phys. Lett. 198 383
[30] He J, He D, Wang Y, Cui Q, Bellus M Z, Chiu H Y and Zhao H 2015 ACS Nano 9 6436
[31] Mao N, Tang J, Xie L, Wu J, Han B, Lin J, Deng S, Ji W, Xu H and Liu K 2015 J. Am. Chem. Soc. 138 300
[32] Fei R and Yang L 2014 Nano Lett. 14 2884
[33] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Castro Neto A H 2016 Nat. Rev. Mater. 1 16061
[34] Yang J, Xu R, Pei J, Myint Y W, Wang F, Wang Z, Zhang S, Yu Z and Lu Y 2015 Light: Science & Applications 4 e312
[35] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517
[36] Liu Y, Low T and Ruden P P 2016 Phys. Rev. B 93 165402
[37] Liu H, Du Y, Deng Y and Ye P D 2015 Chem. Soc. Rev. 44 2732
[38] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4485
[39] Cao X and Guo J 2015 IEEE Trans. Electron Devices 62 659
[40] Haratipour N, Robbins M C and Koester S J 2015 IEEE Electron Dev. Lett. 36 411
[41] Haratipour N, Namgung S, Oh S H and Koester S J 2016 ACS Nano 10 3791
[42] Du Y, Yang L, Zhou H and Ye P D 2016 IEEE Electron Dev. Lett. 37 429
[43] Li L, Engel M, Farmer D B, Han S j and Wong H S P 2016 ACS Nano 10 4672
[44] Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N and Akinwande D 2015 Nano Lett. 15 1883
[45] Liu H, Neal A T, Si M, Du Y and Ye P D 2014 IEEE Electron Dev. Lett. 35 795
[46] Haratipour N and Koester S J 2016 IEEE Electron Dev. Lett. 37 103
[47] Li X, Du Y, Si M, Yang L, Li S, Li T, Xiong X, Ye P and Wu Y 2016 Nanoscale 8 3572
[48] Perello D J, Chae S H, Song S and Lee Y H 2015 Nat. Commun. 6 7809
[49] Wang G, Bao L, Pei T, Ma R, Zhang Y Y, Sun L, Zhang G, Yang H, Li J, Gu C, Du S, Pantelides S T, Schrimpf R D and Gao H J 2016 Nano Lett. 16 6870
[50] Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Ping H W, Özyilmaz B, Neto A H C, Wee A T S and Chen W 2015 Nat. Commun. 6 6485
[51] Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Castro Neto A H and Özyilmaz B 2016 Nano Lett. 16 2145
[52] Prakash A, Cai Y, Zhang G, Zhang Y W and Ang K W 2017 Small 13 1602909
[53] Penumatcha A V, Salazar R B and Appenzeller J 2015 Nat. Commun. 6 8948
[54] Du Y, Liu H, Deng Y and Ye P D 2014 ACS Nano 8 10035
[55] Liu F, Shi Q, Wang J and Guo H 2015 Appl. Phys. Lett. 107 203501
[56] Constantinescu G C and Hine N D 2016 Nano Lett. 16 2586
[57] Kang J, Jariwala D, Ryder C R, Wells S A, Choi Y, Hwang E, Cho J H, Marks T J and Hersam M C 2016 Nano Lett. 16 2580
[58] Penumatcha A V, Salazar R B and Appenzeller J 2015 Nat. Commun. 6 8948
[59] Du Y, Neal A T, Zhou H and Ye P D 2016 J. Phys.: Condens. Mat. 28 263002
[60] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
[61] Pan Y, Wang Y, Ye M, Quhe R, Zhong H, Song Z, Peng X, Yu D, Yang J, Shi J and Lu J 2016 Chem. Mater. 28 2100
[62] Chanana A and Mahapatra S 2014 J. Appl. Phys. 116 204302
[63] Gong K, Zhang L, Ji W and Guo H 2014 Phys. Rev. B 90 125441
[64] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L and Ye F 2015 Nat. Nanotechnol. 10 534
[65] Avsar A, Vera-Marun I J, Tan J Y, Watanabe K, Taniguchi T, Castro Neto A H and Ozyilmaz B 2015 ACS Nano 9 4138
[66] Padilha J, Fazzio A and da Silva A J 2015 Phys. Rev. Lett. 114 066803
[67] Wang H, Wang X, Xia F, Wang L, Jiang H, Xia Q, Chin M L, Dubey M and Han S J 2014 Nano Lett. 14 6424
[68] Zhu W, Park S, Yogeesh M N, McNicholas K M, Bank S R and Akinwande D 2016 Nano Lett. 16 2301
[69] Chowdhury S F, Yogeesh M N, Banerjee S K and Akinwande D 2016 IEEE Electron Dev. Lett. 37 449
[70] Miao J, Zhang S, Cai L, Scherr M and Wang C 2015 ACS Nano 9 9236
[71] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P and Shepard K 2010 Nat. Nanotechnol. 5 722
[72] Li X, Lu X, Li T, Yang W, Fang J, Zhang G and Wu Y 2015 ACS Nano 9 11382
[73] Li L, Ye G J, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T and Yang L 2015 Nat. Nanotechnol. 10 608
[74] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y and Cai Y 2015 Nat. Commun. 6 7315
[75] Chen P, Xiang J, Yu H, Xie G, Wu S, Lu X, Wang G, Zhao J, Wen F and Liu Z 2015 2D Materials 2 034009
[76] Tayari V, Hemsworth N, Fakih I, Favron A, Gaufres E, Gervais G, Martel R and Szkopek T 2015 Nat. Commun. 6 7702
[77] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[78] Island J O, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 2D Materials 2 011002
[79] Boukhvalov D W, Rudenko A N, Prishchenko D A, Mazurenko V G and Katsnelson M I 2015 PCCP 17 15209
[80] Luo X, Rahbarihagh Y, Hwang J C M, Liu H, Du Y and Ye P D 2014 IEEE Electron Dev. Lett. 35 1314
[81] Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K, Blanter S I, Groenendijk D J, Buscema M, Steele G A and Alvarez J 2014 2D Materials 1 025001
[82] Gao J, Zhang G and Zhang Y W 2016 J. Am. Chem. Soc. 138 4763
[83] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J and Hersam M C 2014 Nano Lett. 14 6964
[84] Kim J S, Liu Y, Zhu W, Kim S, Wu D, Tao L, Dodabalapur A, Lai K and Akinwande D 2015 Sci. Rep. 5 8989
[85] Favron A, Gaufrés E, Fossard F, Phaneuf-L'Heureux A L, Tang N Y, Lévesque P L, Loiseau A, Leonelli R, Francoeur S and Martel R 2015 Nat. Mater. 14 826
[86] Avsar A, Vera-Marun I J, Tan J Y, Watanabe K, Taniguchi T, Castro Neto A H and Özyilmaz B 2015 ACS Nano 9 4138
[87] Engel M, Steiner M and Avouris P 2014 Nano Lett. 14 6414
[88] Doganov R A, O'Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T, Neto A H C and Ozyilmaz B 2015 Nat. Commun. 6 6647
[89] Ryder C R, Wood J D, Wells S A, Yang Y, Jariwala D, Marks T J, Schatz G C and Hersam M C 2016 Nat. Chem. 8 597
[90] Ziletti A, Carvalho A, Campbell D K, Coker D F and Castro Neto A H 2015 Phys. Rev. Lett. 114 046801
[91] Wang V, Kawazoe Y and Geng W 2015 Phys. Rev. B 91 045433
[92] Utt K L, Rivero P, Mehboudi M, Harriss E O, Borunda M F, Pacheco SanJuan A A and Barraza-Lopez S 2015 ACS Central Science 1 320
[93] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechol. 9 780
[94] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899
[95] Mak K F and Shan J 2016 Nat. Photon. 10 216
[96] Xia F, Mueller T, Lin Y m, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[97] Tielrooij K J, Piatkowski L, Massicotte M, Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo Herrero P, van Hulst N F and Koppens F H L 2015 Nat. Nanotechnol. 10 437
[98] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[99] Konstantatos G and Sargent E H 2010 Nat. Nanotechnol. 5 391
[100] Rogalski A, Antoszewski J and Faraone L 2009 J. Appl. Phys. 105 091101
[101] Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691
[102] Li J, Niu L, Zheng Z and Yan F 2014 Adv. Mater. 26 5239
[103] Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S and Castellanos-Gomez A 2014 Nano Lett. 14 3347
[104] Wu J, Koon G K W, Xiang D, Han C, Toh C T, Kulkarni E S, Verzhbitskiy I, Carvalho A, Rodin A S, Koenig S P, Eda G, Chen W, Neto A H C and Özyilmaz B 2015 ACS Nano 9 8070
[105] Huang M, Wang M, Chen C, Ma Z, Li X, Han J and Wu Y 2016 Adv. Mater. 28 3481
[106] Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello M S 2015 Adv. Mater. 27 5567
[107] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T and Xia F 2016 Nano Lett. 16 4648
[108] Wenjing Z, Qixing W, Yu C, Zhuo W and Andrew T S W 2016 2D Materials 3 022001
[109] Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H and Dubey M 2016 Nano Research 9 1543
[110] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292
[111] Ye L, Li H, Chen Z and Xu J 2016 ACS Photonics 3 692
[112] Chen P, Zhang T T, Zhang J, Xiang J, Yu H, Wu S, Lu X, Wang G, Wen F, Liu Z, Yang R, Shi D and Zhang G 2016 Nanoscale 8 3254
[113] Buscema M, Groenendijk D J, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nat. Commun. 5 4651
[114] Youngblood N, Chen C, Koester S J and Li M 2015 Nat. Photon. 9 247
[115] Wang Z, Jia H, Zheng X Q, Yang R, Ye G, Chen X and Feng P X L 2016 Nano Lett. 16 5394
[116] Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B and Zhang Y W 2015 Adv. Funct. Mater. 25 2230
[117] Hong T, Chamlagain B, Lin W, Chuang H J, Pan M, Zhou Z and Xu Y Q 2014 Nanoscale 6 8978
[118] Hong T, Chamlagain B, Wang T, Chuang H J, Zhou Z and Xu Y Q 2015 Nanoscale 7 18537
[119] Li P and Appelbaum I 2014 Phys. Rev. B 90 115439
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[4] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[5] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[6] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[7] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[8] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[9] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[13] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[14] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[15] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
No Suggested Reading articles found!