CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Mechanical and thermodynamical stability of BiVO4 polymorphs using first-principles study |
A K M Farid Ul Islam1, Md Nurul Huda Liton2, H M Tariqul Islam3, Md Al Helal2, Md Kamruzzaman4 |
1 Department of Computer Science and Engineering, Begum Rokeya University, Rangpur, Rangpur-5400, Bangladesh; 2 Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400, Bangladesh; 3 Department of Chemistry, Begum Rokeya University, Rangpur, Rangpur-5400, Bangladesh; 4 Department of Physics and Materials Science and Center of Super-Diamond and Advanced Films(COSDAF), City University of Hong Kong, Hong Kong SAR, China |
|
|
Abstract First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different polymorphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the generalized gradient approximation (GGA) in the frame of density functional theory (DFT). The calculated structural and electronic properties are consistent with the previous theoretical and experimental results. The electronic structures reveal that m-BiVO4, op-BiVO4, and st-BiVO4 have indirect band gaps, on the other hand, zt-BiVO4 has a direct band gap. From the DOS and Mulliken's charge analysis, it is observed that only m-BiVO4 has 6s2 Bi lone pair. Bond population analysis indicates that st-BiVO4 shows a more ionic nature and a similar result is obtained from the elastic properties. From the elastic properties, it is observed that st-BiVO4 is more mechanically stable than the others. st-BiVO4 is more ductile and useful for high electro-optical and electro-mechanical coupling devices. Our calculated thermodynamic properties confirm the similar characteristics found from electronic and elastic properties. m-BiVO4 is useful as photocatalysts, solid state electrolyte, and electrode and other polymorphs are applicable in electronic device fabrications.
|
Received: 09 June 2016
Revised: 07 December 2016
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
74.25.Ld
|
(Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Corresponding Authors:
A K M Farid Ul Islam
E-mail: farid_ru@yahoo.com
|
Cite this article:
A K M Farid Ul Islam, Md Nurul Huda Liton, H M Tariqul Islam, Md Al Helal, Md Kamruzzaman Mechanical and thermodynamical stability of BiVO4 polymorphs using first-principles study 2017 Chin. Phys. B 26 036301
|
[1] |
Hoffman M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
|
[2] |
Chen X and Mao S S 2007 Chem. Rev. 107 2891
|
[3] |
Kudo A, Omori K and Kato H 1999 J. Am. Chem. Soc. 121 11459
|
[4] |
Yu J and Kudo A 2006 Adv. Funct. Mater. 16 2163
|
[5] |
Tokunaga S, Kato H and Kudao A 200 Chem. Mater. 13 4624
|
[6] |
Zhang L W, Wang Y J, Cheng H Y, Yao W Q and Zhu Y 2009 Adv. Mater. 21 1286
|
[7] |
Amano F, Yamakata A, Nogmi K, Osawa M and B Ohtani 2008 J. Am. Chem. Soc. 130 17650
|
[8] |
Long M, Cai W and Kisch H 2008 Chem. Phys. Lett. 461 102
|
[9] |
Ke D N, Peng J Y, Ma L, Cai P and Dai L 2009 Inorg. Chem. 48 4685
|
[10] |
Abraham F, Debreuille-Gresse M F, Mairesse G and Nowogrocki G 1988 Solid State Ionics 28-30 529
|
[11] |
Baker T L, Faber K T and Readey D W 1991 J. Am. Chem. Soc. 74 1619
|
[12] |
Sleight A W, Chen H Y, Ferretti A and Cox D E 1979 Meter. Res. Bull. 14 1571
|
[13] |
Walsh A, Yan Y, Huda M N, Al-Jassim M M and Wei S H 2009 Chem. Mater. 21 547
|
[14] |
Liu Y, Huang B, Dai Y, Zhang X, Qin X, Jiang M and Whangbo M H 2009 Catal. Commun. 11 210
|
[15] |
Li G, Zhang D and Yu J 2008 Chem. Mater. 20 3983
|
[16] |
Sayama K, Nomura A, Zou Z, Abe R, Abe Y and Arakawa H 2003 Chem. Commun. 16 2908
|
[17] |
Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y and Sugihara H 2006 J. Phys. Chem. B 110 11352
|
[18] |
Dunkle S S, Helmich R J and Suslick K S 2009 J. Phys. Chem. C 113 11980
|
[19] |
Luo H, Mueller A H, McCleskey T M, Burrell A K, Bauer E and Jia Q X 2008 J. Phys. Chem. C 112 6099
|
[20] |
Yu J Q, Zhang Y and Kudo A 2009 J. Solid. State. Chem. 182 223
|
[21] |
Xie Y, Zhu Y, Yan S and Wang S X 2006 Chemistry-A Eueropean Journal 14 1601
|
[22] |
Neves M C and Trindade T 2002 Thin Solid Films 406 93
|
[23] |
Zhou L, Wang W Z, Liu S W, Zhang L S, Xu H L and Zhu W 2006 J Mol Cata. A: Chemical 252 120
|
[24] |
Sun Y, Wu C, Long R, Cui Y, Zhang S and Xie Y 2009 Chem. Cummun. 30 4542
|
[25] |
Sun Y, Xie Y, Wu C and Long R 2010 Cryst. Growth Des. 10 602
|
[26] |
Shang M, Wang W, Sun S, Ren J, Zhou L and Zhang L 2009 J. Phys. Chem. C 113 20228
|
[27] |
Su J, Guo L, Yoriya S and Grimes C A 2010 Cryst. Growth. Des. 10 856
|
[28] |
Yu J and Kudo A 2005 Chem. Lett. 34 850
|
[29] |
Zhang L, Chen D and Jiao X 2006 J. Phys. Chem. B 110 2668
|
[30] |
Xi G and Ye J 2010 Chem. Commun. 46 1893
|
[31] |
Zhao Y, Xie Y, Zhu X, Yan Sand Wang S 2008 Chem. Eur. J. 14 1601
|
[32] |
Zhou L, Wang W and Xu H 2008 Cryst. Growth. Des. 8 728
|
[33] |
Luo H, Mueller A H, McClesky T M, Burrell A K, Bauer E and Jia Q X 2008 J. Phys. Chem. C 112 6099
|
[34] |
Castillo N C, Ding L, Graule T and Pulgarin C 2010 J. Photochem. Photobiol. A: Chem. 216 221
|
[35] |
Yin H, Sun Y, Shi D, Wang X and Wang L 2011 Int. J. Phys. Sci. 6 4287
|
[36] |
Garcia Perez U M, Sepulveda-Guzman S, Martinez-de la Cruz A and Ortiz Mendez U 2011 J Mol Catal A: Chem 335 169
|
[37] |
Yin W J, Wei S H, Al-Jassim M M, Turner J and Yan Y 2011 Phys. Rev. B 83 155102
|
[38] |
Zhou B, Qu J, Zhao X and Liu H 2011 J. Environ. Sci. 23 151
|
[39] |
Kudo A, Ueda K, Kato and Mikami H 1998 Catal. Lett. 53 229
|
[40] |
Kothani S, Koshiko M, Kudo A, Tokumura K, Ishigaki Y, Toriba A, Hayakawa K and Nakagaki R 2003 Appl. Catal. B 46 573
|
[41] |
Kothani S, Hiro J, Yamamoto N, Kudo A, Tokumura K and Nakagaki R 2005 Catal. Commun. 6 185
|
[42] |
Zhang X, Ai Z, Jia F, Zhang L, Fan X and Zou Z 2007 Mater. Chem. Phys. 103 162
|
[43] |
Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
|
[44] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[45] |
Paier J, Marsman M and Hummer K 2006 J. Chem. Phys. 125 249901
|
[46] |
Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
|
[47] |
Yuan Y, Huang Y, Ma F, Zhang Z, Wei X and Zhu G 2016 J. Mater. Sci. 51 6662
|
[48] |
Segall M D, Lindan P, Probet M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[49] |
Fagan S B, Mota R and Baierle R J 2001 J. Mol. Struct. 539 101
|
[50] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[51] |
Qurashi M M and Bernes W H 1952 Am. Mineralogist 37 423
|
[52] |
Kweon K E and Hwang G S 2012 Phys. Rev. B 86 165209
|
[53] |
Ding K, Chen B, Fang Z and Zhang Y 2013 Theor. Chem. Acc. 132 1352
|
[54] |
Dreyer G and Tillmanns E 1981 Neues. Jb. Miner. 151
|
[55] |
Kweon K E and Hwang G S 2013 Appl. Phys. Lett. 103 131603
|
[56] |
Wu Z J, Zhao E J, Xiang H P, Hao X F and Liu X J 2007 J. Meng. Phys. Rev. B 76 054115
|
[57] |
Jun L Q, Chao Z N, Sheng L F and Tang L Z 2014 Chin. Phys. B 23 047101
|
[58] |
Beckstein O, Klepeis J E, Hart G L W and Pankratow O 2001 Phys. Rev. B 63 134112
|
[59] |
Wallace D C 1972 Thermodynamics of Crystals (New York: Wiley)
|
[60] |
Piskunov S, Heifets E, Eglitis R I and Borstel G 2004 Comput. Mater. Sci. 29 165
|
[61] |
Voigt W 1928 Lehrbuch der Kristallphysik Leipzig: Teubner 574
|
[62] |
Reuss A and Angew Z 1929 Math. Mech. 9 49
|
[63] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[64] |
Hill R 1963 J.Mech. Phys. Solids 11 357
|
[65] |
Kumar V, Shrivastava A K and Jha V 2010 J. Phys. Chem. Solids 71 1513
|
[66] |
Pugh S F 1954 Philos. Mag. 45 823
|
[67] |
Jenkins C H and Khanna S K 2005 Mech. Materials 5 62
|
[68] |
Bilal M, Shafiq M, Ahmad I and Khan I 2014 J. Semicond. 35 072001
|
[69] |
Han Y Y, Mei G Z, Duo H H and Qun W 2013 Solids States Sciences 18 17
|
[70] |
Yildirim A, Koc H and Deligoz E 2012 Chin. Phys. B 21 037101
|
[71] |
Yi W, Qing X and Yan Y 2010 J. Cent South Univ. 21 500
|
[72] |
Kleinman L 1962 Phys. Rev. 128 2614
|
[73] |
Harrison W A 1989 Electronic Structure and Properties of Solids (New York: Dovor)
|
[74] |
Sverdlov V 2011 Strain Induced Effects in Advanced MOSFETs (New York: Springer)
|
[75] |
Chen X Q, Niu H, Li D and Li Y 2011 Intermetallic 19 1275
|
[76] |
Shi D M, Wen B and Melnik R 2009 J. Solid State Chem. 128 2664
|
[77] |
Georgobiani A N and Sheykman M K 1986 Physics Compounds (Moscow: AIIBVI Nauka)
|
[78] |
Deligoz E, Ciftci Y O and Jochym P T 2008 Mater. Chem. Phys. 111 29
|
[79] |
Loffe A F 1958 Physics of Semiconductors Infosearch
|
[80] |
Sanditov D S and Belomestnykh V N 2011 Tech. Phys. 56 1619
|
[81] |
Wan C L, Pan W, Xu Q, Qin Y X, Wang J D, Qu Z X and Fang M H 2006 Phys. Rev. B 74 144109
|
[82] |
Skoug E J, Cain J D and Morelli D T 2010 Appl. Phys. Lett. 96 181905
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|