|
|
Steganalysis and improvement of a quantum steganography protocol via GHZ4 state |
Xu Shu-Jiang (徐淑奖)a b c, Chen Xiu-Bo (陈秀波)a c, Niu Xin-Xin (钮心忻)a, Yang Yi-Xian (杨义光)a |
a Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014, China; c State Key Laboratory of Information Security, (Institute of Information Engineering, Chinese Academy of Sciences), Beijing 100093, China |
|
|
Abstract Quantum steganography that utilizes quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, El Allati et al. proposed a new quantum steganography using GHZ4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ4 state, we give another 8 groups of unitary transformations that can change the GHZ4 state into 8 different quantum states. Due to the symmetry of the GHZ4 state, all the possible 16 groups of unitary transformations change the GHZ4 state into 8 different quantum states, so the improved protocol achieves a high efficiency.
|
Received: 07 November 2012
Revised: 24 December 2012
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61170272, 61272514, 61003287, and 61070163), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100005120002), the Fok Ying Tong Education Foundation (Grant No. 131067), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FM023), the Outstanding Research Award Fund for Young Scientists of Shandong Province, China (Grant No. BS2011DX034), and the Fundamental Research Funds for Central Universities of China (Grant No. BUPT2012RC0221). |
Corresponding Authors:
Chen Xiu-Bo
E-mail: flyover100@163.com
|
Cite this article:
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义光) Steganalysis and improvement of a quantum steganography protocol via GHZ4 state 2013 Chin. Phys. B 22 060307
|
[1] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, 12-19 December, 1984, Bangalore, India, p. 175
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Zhu C H, Pei C X, Quan D X, Gao J L, Chen N and Yi Y H 2010 Chin. Phys. Lett. 27 090301
|
[4] |
Zhou Y Y and Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese)
|
[5] |
Zhou N R, Wang L J, Gong L H, Zuo X W and Liu Y 2011 Opt. Commun. 284 4836
|
[6] |
Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
|
[7] |
Chen X B, Yang S, Su Y and Yang Y X 2012 Phys. Scr. 86 055002
|
[8] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
|
[9] |
Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309
|
[10] |
Chen X B, Niu X X, Zhou X J and Yang Y X 2012 Quantum Inf. Process. 12 365
|
[11] |
Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
|
[12] |
Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
|
[13] |
Chen X B, Wang T Y, Du J Z, Wen Q Y and Zhu F C 2008 Int. J. Quantum Inf. 6 543
|
[14] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[15] |
Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
|
[16] |
Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quantum Inf. 6 899
|
[17] |
Terhal B M, DiVincenzo D P and Leung D W 2001 Phys. Rev. Lett. 86 5807
|
[18] |
Eggeling T and Werner R F 2002 Phys. Rev. Lett. 89 097905
|
[19] |
DiVincenzo D P, Leung D W and Terhal B M 2002 IEEE Trans. Inf. Theory 48 580
|
[20] |
Guo G C and Guo G P 2003 Phys. Rev. A 68 044303
|
[21] |
Hayden P, Leung D and Smith G 2005 Phys. Rev. A 71 062339
|
[22] |
Chattopadhyay I and Sarkar D 2007 Phys. Lett. A 365 273
|
[23] |
Matthews W, Wehner S and Winter A 2009 J. Commun. Math. Phys. 291 813
|
[24] |
Gea-Banacloche J 2002 J. Math. Phys. 43 4531
|
[25] |
Shaw B A and Brun T A 2011 Phys. Rev. A 83 022310
|
[26] |
Cao D and Song Y L 2011 J. Inf. Comput. Sci. 8 1793
|
[27] |
Cao D and Song Y L 2011 J. Inf. Comput. Sci. 8 2703
|
[28] |
Mogos G 2008 International Symposium on Computer Science and Its Applications, 13-15 October, 2008, Hobart, Australia, p. 187
|
[29] |
Mogos G 2009 Int. J. Multimedia Ubiquitous Eng. 4 13
|
[30] |
Worley III G G 2004 arXiv: 0401041v2 [hep-ph]
|
[31] |
Martin K 2007 LNCS 4567 32
|
[32] |
Zhang D X and Liao X Y 2007 Wseas Trans. Comput. 5 757
|
[33] |
Liao X, Wen Q Y, Y Sun and J Zhang 2010 The Journal of Systems and Software 83 1801
|
[34] |
Gao F, Liu B, Zhang W W, Wen Q Y and Liu H 2013 Quantum Inf. Process. 12 625
|
[35] |
Qu Z G, Chen X B, Niu X X and Yang Y X 2010 Opt. Commun. 283 4782
|
[36] |
Qu Z G, Chen X B, Niu X X and Yang Y X 2011 Opt. Commun. 284 2075
|
[37] |
Fatahi N and Naseri M 2012 Int. J. Theor. Phys. 51 2094
|
[38] |
Iliyasu A M, Le P Q, Dong F Y and Hirota K 2012 Inf. Sci. 186 126
|
[39] |
El Allati A, Ould Medeni M B and Hassouni1 Y 2012 Commun. Theor. Phys. 57 577
|
[40] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[41] |
Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T and Pan J W 2007 Nat. Phys. 3 91
|
[42] |
Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 Nature 404 256
|
[43] |
Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
|
[44] |
Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature 430 54
|
[45] |
Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
|
[46] |
Kim J, Takeuchi S, Yamamoto Y and Hogue H 1999 Appl. Phys. Lett. 74 902
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|