Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060307    DOI: 10.1088/1674-1056/22/6/060307
GENERAL Prev   Next  

Steganalysis and improvement of a quantum steganography protocol via GHZ4 state

Xu Shu-Jiang (徐淑奖)a b c, Chen Xiu-Bo (陈秀波)a c, Niu Xin-Xin (钮心忻)a, Yang Yi-Xian (杨义光)a
a Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014, China;
c State Key Laboratory of Information Security, (Institute of Information Engineering, Chinese Academy of Sciences), Beijing 100093, China
Abstract  Quantum steganography that utilizes quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, El Allati et al. proposed a new quantum steganography using GHZ4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ4 state, we give another 8 groups of unitary transformations that can change the GHZ4 state into 8 different quantum states. Due to the symmetry of the GHZ4 state, all the possible 16 groups of unitary transformations change the GHZ4 state into 8 different quantum states, so the improved protocol achieves a high efficiency.
Keywords:  quantum steganography      GHZ4 entangled state      quantum cryptography      quantum communication  
Received:  07 November 2012      Revised:  24 December 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61170272, 61272514, 61003287, and 61070163), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100005120002), the Fok Ying Tong Education Foundation (Grant No. 131067), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FM023), the Outstanding Research Award Fund for Young Scientists of Shandong Province, China (Grant No. BS2011DX034), and the Fundamental Research Funds for Central Universities of China (Grant No. BUPT2012RC0221).
Corresponding Authors:  Chen Xiu-Bo     E-mail:  flyover100@163.com

Cite this article: 

Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义光) Steganalysis and improvement of a quantum steganography protocol via GHZ4 state 2013 Chin. Phys. B 22 060307

[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, 12-19 December, 1984, Bangalore, India, p. 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Zhu C H, Pei C X, Quan D X, Gao J L, Chen N and Yi Y H 2010 Chin. Phys. Lett. 27 090301
[4] Zhou Y Y and Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese)
[5] Zhou N R, Wang L J, Gong L H, Zuo X W and Liu Y 2011 Opt. Commun. 284 4836
[6] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[7] Chen X B, Yang S, Su Y and Yang Y X 2012 Phys. Scr. 86 055002
[8] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
[9] Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309
[10] Chen X B, Niu X X, Zhou X J and Yang Y X 2012 Quantum Inf. Process. 12 365
[11] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[12] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[13] Chen X B, Wang T Y, Du J Z, Wen Q Y and Zhu F C 2008 Int. J. Quantum Inf. 6 543
[14] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[15] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[16] Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quantum Inf. 6 899
[17] Terhal B M, DiVincenzo D P and Leung D W 2001 Phys. Rev. Lett. 86 5807
[18] Eggeling T and Werner R F 2002 Phys. Rev. Lett. 89 097905
[19] DiVincenzo D P, Leung D W and Terhal B M 2002 IEEE Trans. Inf. Theory 48 580
[20] Guo G C and Guo G P 2003 Phys. Rev. A 68 044303
[21] Hayden P, Leung D and Smith G 2005 Phys. Rev. A 71 062339
[22] Chattopadhyay I and Sarkar D 2007 Phys. Lett. A 365 273
[23] Matthews W, Wehner S and Winter A 2009 J. Commun. Math. Phys. 291 813
[24] Gea-Banacloche J 2002 J. Math. Phys. 43 4531
[25] Shaw B A and Brun T A 2011 Phys. Rev. A 83 022310
[26] Cao D and Song Y L 2011 J. Inf. Comput. Sci. 8 1793
[27] Cao D and Song Y L 2011 J. Inf. Comput. Sci. 8 2703
[28] Mogos G 2008 International Symposium on Computer Science and Its Applications, 13-15 October, 2008, Hobart, Australia, p. 187
[29] Mogos G 2009 Int. J. Multimedia Ubiquitous Eng. 4 13
[30] Worley III G G 2004 arXiv: 0401041v2 [hep-ph]
[31] Martin K 2007 LNCS 4567 32
[32] Zhang D X and Liao X Y 2007 Wseas Trans. Comput. 5 757
[33] Liao X, Wen Q Y, Y Sun and J Zhang 2010 The Journal of Systems and Software 83 1801
[34] Gao F, Liu B, Zhang W W, Wen Q Y and Liu H 2013 Quantum Inf. Process. 12 625
[35] Qu Z G, Chen X B, Niu X X and Yang Y X 2010 Opt. Commun. 283 4782
[36] Qu Z G, Chen X B, Niu X X and Yang Y X 2011 Opt. Commun. 284 2075
[37] Fatahi N and Naseri M 2012 Int. J. Theor. Phys. 51 2094
[38] Iliyasu A M, Le P Q, Dong F Y and Hirota K 2012 Inf. Sci. 186 126
[39] El Allati A, Ould Medeni M B and Hassouni1 Y 2012 Commun. Theor. Phys. 57 577
[40] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[41] Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T and Pan J W 2007 Nat. Phys. 3 91
[42] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 Nature 404 256
[43] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
[44] Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature 430 54
[45] Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
[46] Kim J, Takeuchi S, Yamamoto Y and Hogue H 1999 Appl. Phys. Lett. 74 902
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[4] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[8] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[9] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[10] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[11] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[12] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[13] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[14] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[15] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
No Suggested Reading articles found!