Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024102    DOI: 10.1088/1674-1056/26/2/024102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Metamaterial beam scanning leaky-wave antenna based on quarter mode substrate integrated waveguide structure

Guo-Cheng Wu(吴国成), Guang-Ming Wang(王光明), Xiao-Long Fu(付孝龙), Jian-Gang Liang(梁建刚), Wei-Xiong Bai(白渭雄)
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract  In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide (QMSIW). The simulated results show that the proposed QMSIW-based metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna (LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated, and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward -43° to forward +32° over an operating frequencyrange of 8.9 GHz-11.8 GHz with return loss better than 10 dB. The measured antenna gain keeps consistent with the variation of less than 2 dB over the operating frequency range with a maximum gain of 12 dB. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.
Keywords:  metamaterial leaky-wave antenna      quarter mode substrate integrated waveguide (QMSIW)      continuous beam scanning property  
Received:  20 June 2016      Revised:  14 October 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
Corresponding Authors:  Guo-Cheng Wu     E-mail:  wgc805735557@163.com

Cite this article: 

Guo-Cheng Wu(吴国成), Guang-Ming Wang(王光明), Xiao-Long Fu(付孝龙), Jian-Gang Liang(梁建刚), Wei-Xiong Bai(白渭雄) Metamaterial beam scanning leaky-wave antenna based on quarter mode substrate integrated waveguide structure 2017 Chin. Phys. B 26 024102

[1] Zhang Z, Yang N and Wu K 2009 IEEE Radio Wireless Symp. Dig. p. 95
[2] Senior D E, Rahimi A and Yoon Y K 2014 IEEE MTT-S into Microwave Symp. Dig. p. 1
[3] Wang N, Jin C, Xu X W and Sun H J 2014 IEEE Proc. Asia-Pacific Microw. Conf. pp. 286-288
[4] Park G S, Wei Y Y, Wang H L, et al. 2016 Chin. Phys. Lett. 33 44201
[5] Jin C and Shen Z X 2014 IEEE Trans. Microw. Theory Techn. 62 37
[6] Zhang X J, Ma C Y and Wang F 2015 Electron. Lett. 51 912
[7] Zhu L, Liu X Y and Feng Y J 2016 Chin. Phys. B 25 034101
[8] Jin C, Li R, Alphones A and Bao X 2013 IEEE Trans. Antennas Propag. 61 2921
[9] Jin C, Li R, Hu S M, Zhang S B, Chang K F and Zheng B Y 2014 IEEE Trans. Compon. Packag. Manuf. Technol. 4 392
[10] Muhammad Usman Memon and Sungjoon Lim 2015 IEEE Antennas Wireless Propag. Lett. 14 1606
[11] Wang H B and Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914
[12] Guan C, Wang P P and Bi J J 2015 Chin. J. Radio Sci. 30 97 (in Chinese)
[13] He F M, Xie W Q, Luo J R, Zhu M and Guo W 2016 Chin. Phys. B 25 038401
[14] Colan G M Ryan, George V Eleftheriades 2015 IEEE Antennas Wireless Propag. Lett. 14 470
[15] Dong Y D and Itoh T 2011 IEEE Trans. Antennas Propag. 59 767
[16] Lee D J and Lim S J 2015 Microwave Opt. Technol. Lett. 57 1234
[17] Pozar D M 2005 Microwave Engineering, 3rd edn. (Hoboken, NJ, USA), Chap. 6.3
[18] Ali Pourghorban Saghati, Mir Mojtaba Mirsalehi and Mohammad Hassan Neshati 2014 IEEE Antennas Wireless Propag. Lett. 13 451
[19] Nasimuddin, Zhi Ning Chen and Xianming Qing 2012 IEEE Trans. Antennas Propag. 60 5056
[20] Nasimuddin, Zhi Ning Chen and Xianming Qing 2013 IEEE Trans. Antennas Propag. 61 3451
[21] Nasimuddin, Zhi Ning Chen and Xianming Qing 2015 Microwave and Optical Technology Letters 57 624
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[6] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[7] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[8] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[9] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[10] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[11] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[14] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!