ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence |
Zhen-Zhen Song(宋真真)1, Zheng-Jun Liu(刘正君)2, Ke-Ya Zhou(周可雅)1, Qiong-Ge Sun(孙琼阁)3, Shu-Tian Liu(刘树田)1 |
1 Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
2 Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150001, China;
3 Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China |
|
|
Abstract We derive an analytical expression for the propagation factor (known as M2-factor) of electromagnetic concentric rings Schell-model (EM CRSM) beams in non-Kolmogorov turbulence by utilizing the extended Huygens-Fresnel diffraction integral formula and the second-order moments of the Wigner distribution function (WDF). Our results show that the EM CRSM beam has advantage over the scalar CRSM beam for reducing the turbulence-induced degradation under suitable conditions. The EM CRSM beam with multi-rings far-fields in free space is less affected by the turbulence than the one with dark-hollow far-fields or the electromagnetic Gaussian Schell-model (EGSM) beam. The dependence of the M2-factor on the beam parameters and the turbulence are investigated in detail.
|
Received: 19 September 2016
Revised: 27 October 2016
Accepted manuscript online:
|
PACS:
|
42.25.Dd
|
(Wave propagation in random media)
|
|
42.25.Kb
|
(Coherence)
|
|
42.68.Bz
|
(Atmospheric turbulence effects)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01702), the National Natural Science Foundation of China (Grant Nos. 61377016, 11104049, 10974039, 61575055, and 61575053), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.BRETIII.201406), and the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0148). |
Corresponding Authors:
Shu-Tian Liu
E-mail: stliu@hit.edu.cn
|
Cite this article:
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田) Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence 2017 Chin. Phys. B 26 024201
|
[1] |
Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (New York: Cambridge University Press) pp. 276-287
|
[2] |
Ricklin J C and Davidson F M 2003 J. Opt. Soc. Am. A 20 856
|
[3] |
Ricklin J C and Davidson F M 2002 J. Opt. Soc. Am. A 19 1794
|
[4] |
Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
|
[5] |
Dogariu A and Amarande S 2003 Opt. Lett. 28 10
|
[6] |
Shirai T, Dogariu A and Wolf E J. Opt. Soc. Am. A 20 1094
|
[7] |
Zhang E, Ji X and Lü B 2009 Chin. Phys. B 18 571
|
[8] |
He X and Lü B 2011 Chin. Phys. B 20 094210
|
[9] |
Li Y, Wu Z, Zhang Y and Wang M 2014 Chin. Phys. B 23 074202
|
[10] |
Li Y, Wu Z and Wang M 2014 Chin. Phys. B 23 064216
|
[11] |
Ting Y, Ji X and Li X 2015 Acta Phys. Sin. 64 204206 (in Chinese)
|
[12] |
Gori F and Santarsiero M 2007 Opt. Lett. 32 3531
|
[13] |
Lajunen H and Saastamoinen T 2011 Opt. Lett. 36 4104
|
[14] |
Mei Z 2014 Opt. Lett. 39 347
|
[15] |
Song Z, Liu Z, Zhou K, Sun Q and Liu S 2016 J. Opt. 18 015606
|
[16] |
Korotkova O, Sahin S and Shchepakina E 2012 J. Opt. Soc. Am. A 29 2159
|
[17] |
Mei Z and Korotkova O 2013 Opt. Lett. 38 91
|
[18] |
Mei Z and Korotkova O 2013 Opt. Lett. 38 2578
|
[19] |
Chen Y, Gu J, Wang F and Cai Y 2015 Phys. Rev. A 91 013823
|
[20] |
Mei Z 2014 Opt. Express 22 13029
|
[21] |
Mei Z and Korotkova O 2015 Opt. Lett. 40 2473
|
[22] |
Mei Z, Zhao D and Korotkova O 2015 Opt. Lett. 40 5662
|
[23] |
Gori F, Remírez-sánchez V, Santarsiero M and Shirai T 2009 J. Opt. A: Pure Appl. Opt. 11 085706
|
[24] |
Gori F, Santarsiero M, Piquero G, Borghi R, Mondello A and Simon R 2001 J. Opt. A: Pure Appl. Opt. 3 1
|
[25] |
Mei Z, Korotkova O and Shchepakina E 2013 J. Opt. 15 025705
|
[26] |
Chen X and Zhao D 2016 Opt. Commun. 372 137
|
[27] |
Mei Z and Korotkova O 2013 Opt. Express 21 27246
|
[28] |
Mei Z and Mao Y 2014 Opt. Express 22 22534
|
[29] |
Siegman A E 1990 SPIE 14 2
|
[30] |
Zhu S, Cai Y and Korotkova O 2010 Opt. Express 18 12587
|
[31] |
Xu H and Zhang Z, Qu J and Huang W 2014 Opt. Express 22 22479
|
[32] |
Du S, Yuan Y, Liang C and Cai Y 2013 Opt. Laser Technol. 50 14
|
[33] |
Chen R, Liu L, Zhu S, Wu G, Wang F and Cai Y 2014 Opt. Express 22 1871
|
[34] |
Song Z, Liu Z, Zhou K, Sun Q and Liu S 2016 Opt. Express 24 1804
|
[35] |
Song Z, Liu Z, Zhou K, Sun Q and Liu S 2016 J. Opt. 18 105601
|
[36] |
Mei Z and Korotkova O 2016 Opt. Express 24 5572
|
[37] |
Shchepakina E and Korotkova O 2010 Opt. Express 18 10650
|
[38] |
Toselli I, Andrews L C, Phillips R L and Ferrero V 2008 Opt. Eng. 47 026003
|
[39] |
Dan Y and Zhang B 2008 Opt. Express 16 15563
|
[40] |
Yuan Y, Cai Y, Qu J, Eyyuboğlu H T, Baykal Y and Korotkova O 2009 Opt. Express 17 17344
|
[41] |
Dan Y and Zhang B 2009 Opt. Lett. 34 563
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|