Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044101    DOI: 10.1088/1674-1056/ac3740
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Strong chirality in twisted bilayer α-MoO3

Bi-Yuan Wu(吴必园)1,2, Zhang-Xing Shi(石章兴)2, Feng Wu(吴丰)3, Ming-Jun Wang(王明军)1,4,†, and Xiao-Hu Wu(吴小虎)2,‡
1 School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 Shandong Institute of Advanced Technology, Jinan 250100, China;
3 School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
4 School of Physics and Telecommunications Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Abstract  Chiral structures are promising in many applications, such as biological sensing and analytical chemistry, and have been extensively explored. In this paper, we theoretically investigate the chiral response of twisted bilayer α-MoO3. Firstly, the analytical formula for the transmissivity is derived when the structure is illuminated with circularly polarized plane waves. Furthermore, the results demonstrate that the twisted bilayer α-MoO3 can excite the strong chirality with the maximum circular dichroism (CD) of 0.89. In this case, the chirality is due to the simultaneous breaking the rotational symmetry and mirror symmetry, which originates from the relative rotation of two α-MoO3 layers. To better understand the physical mechanism, the polarization conversion between the left-hand circular polarization (LCP) and right-hand circular polarization (RCP) waves is discussed as well. Moreover, it is found that the structure can maintain the strong chirality (CD> 0.8) when the twisted angle varies from 69° to 80°, which effectively reduces the strictness in the requirement for rotation angle. In addition, the CD can be larger than 0.85 when the incidence angle of circularly polarized plane wave is less than 40°, implying that the chirality is robust against the angle of incidence. Our work not only provides an insight into chirality induced by the twisted bilayer α-MoO3, but also looks forward to applications in biological sensing.
Keywords:  chirality      twisted bilayer      α-MoO3  
Received:  26 September 2021      Revised:  22 October 2021      Accepted manuscript online:  06 November 2021
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  11.30.Rd (Chiral symmetries)  
Fund: Project supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92052106), the National Natural Science Foundation of China (Grant Nos. 61771385 and 52106099), the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2020JC-42), the Science and Technology on Solid-State Laser Laboratory, China (Grant No. 6142404190301), the Science and Technology Research Plan of Xi'an City, China (Grant No. GXYD14.26), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020LLZ004), and the Start-Up Funding of Guangdong Polytechnic Normal University, China (Gtrant No. 2021SDKYA033).
Corresponding Authors:  Ming-Jun Wang, Xiao-Hu Wu     E-mail:  wangmingjun@xaut.edu.cn;xiaohu.wu@iat.cn

Cite this article: 

Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎) Strong chirality in twisted bilayer α-MoO3 2022 Chin. Phys. B 31 044101

[1] Sharma V, Crne M, Park J O and Srinivasarao M 2009 Science 325 449
[2] Martens K, Binkowski F, Nguyen L, Hu L, Govorov A O, Burger S and Liedl T 2021 Nat. Commun. 12 2025
[3] Kleinlogel S and White A G 2008 PLoS One 3 e2190
[4] Liu T, Besteiro L V, Liedl T, Correa-Duarte M A, Wang Z and Govorov A O 2019 Nano Lett. 19 1395
[5] Yu P, Wang B, Wu X, Wang W, Xu H and Wang Z 2020 Acta Phys. Sin. 69 207101 (in Chinese)
[6] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N and Kadodwala M 2010 Nat. Nanotechnol. 5 783
[7] Singh A, Kaur N and Chopra H K 2019 Crit. Rev. Anal. Chem. 49 553
[8] Kwon D, Werner P L and Werner D H 2008 Opt. Express 16 11802
[9] Tang Y and Cohen A E 2010 Phys. Rev. Lett. 104 163901
[10] Wu X, Fu C and Zhang Z M 2020 ES Energy Environ. 8 5
[11] Yoo S and Park Q 2015 Phys. Rev. Lett. 114 203003
[12] Upadhyay S S, Gadhari N S and Srivastava A K 2020 Biosens. Bioelectron. 165 112397
[13] Wu Z, Chen X, Wang M, Dong J and Zheng Y 2018 ACS Nano 12 5030
[14] Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L and Kotov N A 2013 Nat. Commun. 4 2689
[15] Hu L, Cheng F, Tang Y and Wang H 2021 Eur. Phys. J. B 94 8
[16] Chen Y, Gao J and Yang X 2018 Nano Lett. 18 520
[17] Li Z and Wang Z F 2020 Chin. Phys. B 29 107101
[18] Xiao W, Shi X, Zhang Y and Zeng Y 2019 Phys. Scr. 94 085501
[19] He T, Ye Q and Song G 2020 Chin. Phys. B 29 097306
[20] Kong X, Khorashad L K, Wang Z and Govorov A O 2018 Nano Lett. 18 2001
[21] Liu C, Wu F, Jiang Q, Chen Y and Yin C 2020 Eur. Phys. J. B 93 197
[22] Wang Z, Jia H, Yao K, Cai W, Chen H and Liu Y 2016 ACS Photon. 3 2096
[23] Svirko Y, Zheludev N and Osipov M 2001 Appl. Phys. Lett. 78 498
[24] Rogacheva A V, Fedotov V A, Schwanecke A S and Zheludev N I 2006 Phys. Rev. Lett. 97 177401
[25] Plum E, Fedotov V A, Schwanecke A S, Zheludev N I and Chen Y 2007 Appl. Phys. Lett. 90 223113
[26] Decker M, Klein M W, Wegener M and Linden S 2007 Opt. Lett. 32 856
[27] Wu X, Fu C and Zhang Z M 2019 Opt. Commun. 452 124
[28] Gao W, Leung H M, Chen H and Tam W Y 2011 J. Opt. 13 115101
[29] Bai Y, Wang Y, Chen Y, Zhang Y, Fu T, Zhang Z and Wan L 2018 Optik 154 165
[30] He G, Shang X, Yue J, Zhai X, Xia S, Li H and Wang L 2020 J. Opt. Soc. Am. B 37 927
[31] Ullah H, Abudukelimu A, Qu Y, Bai Y, Aba T and Zhang Z 2020 Nanotechnology 31 275205
[32] Shi J, Liu X, Yu S, Lv T, Zhu Z, Ma H F and Cui T J 2013 Appl. Phys. Lett. 102 191905
[33] Lv T, Chen X, Dong G, Liu M, Liu D, Ouyang C, Zhu Z, Li Y, Guan C, Han J, Zhang W, Zhang S and Shi J 2020 Nanophotonics 9 3235
[34] Dong J, Zhou J, Koschny T and Soukoulis C 2009 Opt. Express 17 14172
[35] Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Nat. Photon. 7 948
[36] Shekhar P, Atkinson J and Jacob Z 2014 Nano Converg. 1 14
[37] Takayama O and Lavrinenko A V 2019 J. Opt. Soc. Am. B 36 F38
[38] Chen M, Lin X, Dinh T H, Zheng Z, Shen J, Ma Q, Chen H, Jarillo-Hereero P and Dai S 2020 Nat. Mater. 19 1307
[39] Wu B, Wang M, Wu F and Wu X 2020 Appl. Opt. 60 4599
[40] Zhou C, Wu X, Zhang Y, Yi H and Antezza M 2021 Phys. Rev. B 103 155404
[41] Zhou C, Wu X, Zhang Y, Xie M and Yi H 2021 Appl. Phys. Lett. 118 173103
[42] Zhou C, Yang S, Zhang Y and Yi H 2020 Nanoscale Microscale Thermophys. Eng. 24 168
[43] Wei C and Cao T 2021 J. Phys. D 54 234005
[44] Lin X, Liu Z, Stauber T, Gómez-Santos G, Gao F and Chen H 2020 Phys. Rev. Lett. 125 077401
[45] Stauber T, Low T and Gómez-Santos G 2018 Phys. Rev. Lett. 120 046801
[46] Wu X, Fu C and Zhang Z M 2020 J. Heat Transfer 142 072802
[47] Wu X and Fu C 2018 Nanoscale Microscale Thermophys. Eng. 22 114
[48] Moharam M G, Grann E B and Pommet D A 1995 J. Opt. Soc. Am. 12 1068
[49] Wu X, Jin C and Fu C 2017 Opt. Commun. 402 507
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[6] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[7] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[8] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[9] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[10] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[11] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[12] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[13] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[14] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[15] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
No Suggested Reading articles found!