Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127307    DOI: 10.1088/1674-1056/26/12/127307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Macro-performance of multilayered thermoelectric medium

Kun Song(宋坤), Hao-Peng Song(宋豪鹏), Cun-Fa Gao(高存法)
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
Abstract  The effective properties of thermoelectric composites are well known to depend on boundary conditions, which causes the macro performance of thermoelectric composite to be difficult to assess. The overall macro-performance of multilayered thermoelectric medium is discussed in this paper. The analytical solutions are obtained, including the heat flux, temperature, electric potential, and the overall energy conversion efficiency. The results show that there are unique relationships between the temperature/electric potential and the electric current/energy flux in the material, and whether the material is independent of or embedded in thermoelectric composites. Besides, the Peltier effect at the interface can significantly improve the overall energy conversion efficiency of thermoelectric composites. These results provide a powerful tool to analyze the effective behaviors of thermoelectric composites.
Keywords:  multi-layered      thermoelectric material      conversion efficiency      Peltier effect      heat flux      electric energy  
Received:  11 May 2017      Revised:  11 September 2017      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  46.25.Cc (Theoretical studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11232007 and 11202099), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. MCMS-0215G01), and the Fundamental Research Funds for the Central Universities, China (Grant No. NS2016008).
Corresponding Authors:  Hao-Peng Song     E-mail:  hpsong@nuaa.edu.cn

Cite this article: 

Kun Song(宋坤), Hao-Peng Song(宋豪鹏), Cun-Fa Gao(高存法) Macro-performance of multilayered thermoelectric medium 2017 Chin. Phys. B 26 127307

[1] Liu L, Lu X S, Shi M L, Ma Y K and Shi J Y 2016 Solar Energy 132 386
[2] Ting H 2016 7th International Conference on IEEE Mechanical and Aerospace Engineering (ICMAE), p. 35
[3] Bankston C P, Cole T, Jones R and Ewell R 1983 J. Energy 7 442
[4] Yang J and Caillat T 2006 MRS Bulletin 31 224
[5] He W, Wang S, Li Y and Zhao Y 2016 Energy Conversion and Management 129 240
[6] De Leon M T, Chong H and Kraft M 2012 Procedia Engineering 47 76
[7] Schirrmacher S, Ullmann G and Overmeyer L 2015 Energy Harvesting and Systems 2 81
[8] Kristiansen L N R and Nielsen H K 2010 J. Electron. Mater. 39 1746
[9] Luan Y Q, Yang W, Xiao P, Ma Z F and Wang H P 2015 Appl. Mech. Mater. 716 1457
[10] Yip M C and Niemeyer G 2015 2015 IEEE International Conference Robotics and Automation (ICRA), p. 2313
[11] De Backer J, Bolmsjö G and Christiansson A K 2014 Int. J. Adv. Manuf. Technol. 70 375
[12] Ming T, Yang W, Huang X, Wu Y, Li X and Liu J 2017 Energy Conversion and Management 132 261
[13] Demir M E and Dincer I 2017 Desalination 404 59
[14] Zhang J and Xuan Y 2016 Energy Conversion and Management 129 1
[15] Kossyvakis D N, Vassiliadis S G, Vossou C G, Mangiorou E E, Potirakis S M and Hristoforou E V 2016 J. Electron. Mater. 45 2957
[16] Crépieux L A and Michelini F 2014 J. Phys.:Condens. Matter 27 015302
[17] Bell L E 2008 Science 321 1457
[18] Harman T C and Honig J M 1967 Thermoelectric and Thermomagnetic Effects and Applications (New York:McGraw-Hill) p. 377
[19] Nolas G S, Morelli D T and Tritt T M 1999 Ann. Rev. Mater. Sci. 29 89
[20] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
[21] Xie W, Tang X, Yan Y, Zhang Q and Tritt T M 2009 Appl. Phys. Lett. 94 102111
[22] Poudeu P F, Guéguen A, Wu C I, Hogan T and Kanatzidis M G 2009 Chem. Mater. 22 1046
[23] Heremans J P, Thrush C M, Morelli D T and Wu M C 2002 Phys. Rev. Lett. 88 216801
[24] Gothard N, Ji X, He J andTritt T M 2008 J. Appl. Phys. 103 054314
[25] Qi X K, Zeng H R, Yu H Z, Zhao K Y, LiG R, Song J Q, Shi X and Chen L D 2014 Chin. Phys. Lett. 31 127201
[26] Xu Q Q, Xu J, Li M, Liu J X and Li H L 2016 Acta Phys. Sin. 65 2372017(in Chinese)
[27] Zhang H, Chen S P, Long Y, Fan W H, Wang W X and Meng Q S 2015 Acta Phys. Sin. 64 2473028(in Chinese)
[28] Bergman D J and Levy O 1991 J. Appl. Phys. 70 6821
[29] Yang Y, Xie S H, Ma F Y and Li J Y 2012 J. Appl. Phys. 111 013510
[30] ZhangA B and Wang B L 2016 Int. J. Therm. Sci. 104 396
[31] Spanner D C 1951 J. Experimental Botany 2 145
[32] Yang Y, Ma F Y, Lei C H, Liu Y Y and Li J Y 2013 Appl. Phys. Lett. 102 053905
[33] Ahmad K, Wan C and Al-Eshaikh M A 2017 J. Electron. Mater. 46 1348
[34] Antonova E E and Looman D C 24th International Conference on Thermoelectrics, June 19-23, 2005, p. 215
[35] Seo S, Oh M W, Jeong Y and Yoo B 2017 J. Alloys Compd. 696 1151
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[4] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[7] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[8] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[9] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[10] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[11] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[12] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[13] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[14] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[15] Calculation of radiative heat flux on irregular boundaries in participating media
Yu-Jia Sun(孙玉佳) and Shu Zheng(郑树). Chin. Phys. B, 2020, 29(12): 124401.
No Suggested Reading articles found!