ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Calculation of radiative heat flux on irregular boundaries in participating media |
Yu-Jia Sun(孙玉佳)1 and Shu Zheng(郑树)2,† |
1 School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China |
|
|
Abstract Radiative heat flux at wall boundaries is important for its thermal design. Numerical methods based on structured grids are becoming trendy due to their simplicity and efficiency. Existing radiative transfer equation solvers produce oscillating radiative heat flux at the irregular boundary if they are based on structured grids. Reverse Monte Carlo method and analytical discrete ordinates method are adopted to calculate the radiative heat flux at complex boundaries. The results show that the reverse Monte Carlo method can generate a smooth radiative heat flux profile and it is smoother with larger energy bundles. The results from the analytical discrete ordinates method show that the fluctuations are due to the ray effect. For the total or the mean radiative heat flux, the results from the analytical discrete ordinates method are very close to those from the reverse Monte Carlo method.
|
Received: 17 May 2020
Revised: 01 July 2020
Accepted manuscript online: 25 August 2020
|
PACS:
|
44.40.+a
|
(Thermal radiation)
|
|
Fund: Project supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology, the Anhui Provincial Natural Science Foundation, China (Grant No. 2008085ME151), and the National Natural Science Foundation of China (Grant Nos. 51976057 and 51827808). |
Corresponding Authors:
†Corresponding author. E-mail: shuzheng@ncepu.edu.cn
|
Cite this article:
Yu-Jia Sun(孙玉佳) and Shu Zheng(郑树) Calculation of radiative heat flux on irregular boundaries in participating media 2020 Chin. Phys. B 29 124401
|
[1] Yang X, Clements A, Szuhánszki J, Huang X, Farias Moguel O, Li J, Gibbins J, Liu Z, Zheng C, Ingham D, Ma L, Nimmo B and Pourkashanian M Appl. Energy 211 523 DOI: 10.1016/j.apenergy.2017.11.0702018 [2] Seddighi Khavidak S, Pallar\`es D, Normann F, Johnsson F and Ylä-Outinen V Int. J. Greenh. Gas Control 37 264 DOI: 10.1016/j.ijggc.2015.03.0322015 [3] Sun Y, Zheng S, Jiang B, Tang J and Liu F Int. J. Heat Mass Transfer 145 118777 DOI: 10.1016/j.ijheatmasstransfer.2019.1187772019 [4] Ates C, Ozen G, Sel\ccuk N and Kulah G J. Quantum Spectrosc. Radiat. Transfer 182 264 DOI: 10.1016/j.jqsrt.2016.06.0092016 [5] Ates C, Sen O, Sel\ccuk N and Kulah G Int. J. Therm. Sci. 122 266 DOI: 10.1016/j.ijthermalsci.2017.08.0232017 [6] Zheng S, Liang W, Chu H and Zhou H Fuel 266 117061 DOI: 10.1016/j.fuel.2020.1170612020 [7] Sui R and Mantzaras J Combust. Flame 173 370 DOI: 10.1016/j.combustflame.2016.08.0112016 [8] Sui R, Mantzaras J, Es-sebbar E and Bombach R Proc. Combust. Inst. 37 5465 DOI: 10.1016/j.proci.2018.05.1122019 [9] Zheng S, Yang Y, Li X, Liu H, Yan W, Sui R and Lu Q Fuel Process. Technol. 204 106423 DOI: 10.1016/j.fuproc.2020.1064232020 [10] Zheng S, Yang Y, Sun R and Lu Q Appl. Therm. Eng. 183 116194 DOI: 10.1016/j.applthermaleng.2020.1161942021 [11] Liu G and Liu D Chin. Phys. B 27 054401 DOI: 10.1088/1674-1056/27/5/0544012018 [12] Yan J, Wang F, Huang Q, Chi Y, Cen K and Liu D Acta Phys. Sin. 60 060701 (in Chinese) DOI: 10.7498/aps.60.0607012011 [13] Du Y, Peng Z and Ding Y Opt. Express 28 3482 DOI: 10.1364/OE.3832162020 [14] Wang C H, Feng Y Y, Yue K and Zhang X X Int. Commun. Heat Mass Transfer 108 104287 DOI: 10.1016/j.icheatmasstransfer.2019.1042872019 [15] Zhang Y, Ma Y, Yi H and Tan H J. Quantum Spectrosc. Radiat. Transfer 129 118 DOI: 10.1016/j.jqsrt.2013.06.0022013 [16] Chai J C, Lee H O S and Patankar S V. Numer. Heat Transfer Part B Fundam. 26 225 DOI: 10.1080/104077994089149271994 [17] Young Byun D, Wook Baek S and Young Kim M Numer. Heat Transfer Part A Appl. 43 807 DOI: 10.1080/7138381482003 [18] Schneiders L, Günther C, Meinke M and Schröder W J. Comput. Phys. 311 62 DOI: 10.1016/j.jcp.2016.01.0262016 [19] Kim J, Kim D and Choi H J. Comput. Phys. 171 132 DOI: 10.1006/jcph.2001.67782001 [20] Tseng Y H and Ferziger J H J. Comput. Phys. 192 593 DOI: 10.1016/j.jcp.2003.07.0242003 [21] Kim J and Choi H KSME Int. J. 18 1026 DOI: 10.1007/BF029908752004 [22] Luo K, Zhuang Z, Fan J and Haugen N E L Int. J. Heat Mass Transfer 92 708 DOI: 10.1016/j.ijheatmasstransfer.2015.09.0242016 [23] Chen Q, Zhang X and Zhang J Phys. Rev. E 88 033304 DOI: 10.1103/PhysRevE.88.0333042013 [24] Zhang T, Shi B, Guo Z, Chai Z and Lu J Phys. Rev. E 85 016701 DOI: 10.1103/PhysRevE.85.0167012012 [25] Sun Y and Zhang X Int. J. Heat Mass Transfer 97 611 DOI: 10.1016/j.ijheatmasstransfer.2016.01.0742016 [26] Zabihi M, Lari K and Amiri H J. Brazilian Soc. Mech. Sci. Eng. 39 2847 DOI: 10.1007/s40430-017-0729-52017 [27] Amiri H, Mansouri S H and Safavinejad A Int. J. Therm. Sci. 49 492 DOI: 10.1016/j.ijthermalsci.2009.10.0052010 [28] Talukdar P, Mendes M A A, Parida R K, Trimis D and Ray S Int. J. Therm. Sci. 72 102 DOI: 10.1016/j.ijthermalsci.2013.04.0272013 [29] Amiri H, Mansouri S H and Coelho P J Int. J. Therm. Sci. 50 515 DOI: 10.1016/j.ijthermalsci.2010.10.0122011 [30] Aghanajafi C and Abjadpour A2015 J. Brazilian Soc. Mech. Sci. Eng. [31] Sun Y and Zhang X Int. J. Heat Mass Transfer 121 1039 DOI: 10.1016/j.ijheatmasstransfer.2018.01.0672018 [32] Li Z H, Li X L, Xia X L and Sun C Heat Transfer Part B Fundam. 77 22 DOI: 10.1080/10407790.2019.16903682020 [33] Howell J R J. Heat Transfer 120 547 DOI: 10.1115/1.28243101998 [34] Sun Y, Zhang X and Howell J R J. Quant. Spectrosc. Radiat. Transfer 194 31 DOI: 10.1016/j.jqsrt.2017.03.0222017 [35] Chen R, Nie L and Chen C Chaos 28 053115 DOI: 10.1063/1.50069552018 [36] Chen R, Nie L, Chen C and Wang C J. Stat. Mech. 2017 13201 DOI: 10.1088/1742-5468/aa4e942017 [37] Jianqiang Z, Linru N, Chongyang C and Xinyu Z AIP Adv. 6 075212 DOI: 10.1063/1.49595772016 [38] Zhao H, Shi Z and Nie L Eur. Phys. J. B 93 56 DOI: 10.1140/epjb/e2020-100551-02020 [39] Modest M F J. Heat Transfer 125 57 DOI: 10.1115/1.15184912003 [40] Xu Y P and Li S Acta Phys. Sin. 69 029501 (in Chinese) DOI: 10.7498/aps.69.201913152020 [41] Cheng Y, Li H, Zhang J and Huang Z Int. J. Heat Mass Transfer 152 119475 DOI: 10.1016/j.ijheatmasstransfer.2020.1194752020 [42] Wang D and Zhou H J. Quant. Spectrosc. Radiat. Transfer 226 100 DOI: 10.1016/j.jqsrt.2019.01.0012019 [43] Wang F, Liu D, Cen K, Yan J, Huang Q and Chi Y J. Quantum Spectrosc. Radiat. Transfer 109 2171 DOI: 10.1016/j.jqsrt.2008.03.0022008 [44] Zheng S, Sui R, Yang Y, Sun Y, Zhou H and Lu Q Int. Commun. Heat Mass Transfer 114 104566 DOI: 10.1016/j.icheatmasstransfer.2020.1045662020 [45] Sun Y and Zhang X Int. J. Heat Mass Transfer 121 819 DOI: 10.1016/j.ijheatmasstransfer.2018.01.0452018 [46] Sun Y, Ma J, Yu Y, Ye B and Gao C J. Quantum Spectrosc. Radiat. Transfer 236 106600 DOI: 10.1016/j.jqsrt.2019.1066002019 [47] Modest M F2013 Radiative Heat Transfer (New York: Academic Press) [48] Howell J R, Menguc M P and Siegel R2010 Thermal Radiation Heat Transfer (Boca Raton: CRC press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|